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Fluctuating nematic elastomer membranes
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We study the flat phase of nematic elastomer membranes with rotational symmetry spontaneously broken by
an in-plane nematic order. Such a state is characterized by a vanishing elastic modulus for simple shear and soft
transverse phonons. At harmonic level, the in-plane orientational~nematic! order is stable to thermal fluctua-
tions that lead to short-range in-plane translational~phonon! correlations. To treat thermal fluctuations and
relevant elastic nonlinearities, we introduce two generalizations of two-dimensional membranes in a three-
dimensional space to arbitraryD-dimensional membranes embedded in ad-dimensional space and analyze
their anomalous elasticities in an expansion aboutD54. We find a stable fixed point that controls long-scale
properties of nematic elastomer membranes. It is characterized by singular in-plane elastic moduli that vanish
as a power lawhl542D of a relevant inverse length scale~e.g., wave vector! and a finite bending rigidity.
Our predictions are asymptotically exact near four dimensions.
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I. INTRODUCTION

The ubiquity and importance of membrane realizations
nature, such as cellular walls, and in laboratories, such
self-assembled bilayers of lipid amphiphils, have stimula
considerable scientific activities@1#. These nearly tensionles
@2# lipid sheets are highly flexible with elastic moduli ofte
comparable to thermal energies. Consequently, on l
length scales, their conformational properties are strongly
fected by thermal fluctuations. This, together with early s
cesses in understanding a variety of puzzling phenom
~such as red blood cells flicker@3#, biconcave shape of eu
rythrocites @4#, and period of lyotropics! in terms of con-
tinuum models of fluctuating elastic sheets, has attracted
attention of the physics community. Consequently, sign
cant progress has been made in understanding the stati
mechanics of fluctuating membranes@1#.

It is by now well appreciated that the nature of a me
brane’s in-plane order, with three~heretofore studied! univer-
sality classes, the isotropic, hexatic, and solid~i.e., tethered
or polymerized!, crucially affects its conformational prope
ties. The most striking effect of in-plane orders is the sta
lization in solid membranes of a ‘‘flat’’ phase@5#, with a
long-range orientational order in the local membrane n
mals@6#, that is favored at low temperature over the entro
cally preferred high-temperature crumpled state. Theref
in marked contrast to liquid membranes and one-dimensio
polymer analogs, which are always crumpled~beyond a per-
sistence length! @7#, tethered membranes, despite being t
dimensional@8# are predicted@5# to undergo a thermody
namically sharp crumpled-to-flat phase transition@9,10#. The
ordering is made possible by a subtle interplay of therm
fluctuations with nonlinear membrane elasticity, which
long scales infinitely enhances a membrane’s bending ri

*Present address: NEC Laboratories America, Inc., 4 Indep
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ity, thereby stabilizing the orientational order against the
very fluctuations. This novel ‘‘order from disorder’’ phenom
enon and the universal ‘‘anomalous elasticity,’’ name
length-scale dependent elastic moduli, non-Hookean str
strain relation, and a universal negative Poisson ra
@5,6,11,12#, are now known to be quite commonly exhibite
by many other ‘‘soft’’ systems subjected to fluctuations.

In this paper we introduce and explore a universality cl
of solid membranes, whichspontaneouslydevelop anin-
planeorientational nematic order. Our motivation is twofol
First, our interest is driven by experimental progress in
synthesis of nematic liquid-crystal elastomers@13#, statisti-
cally isotropic and homogeneous gels of crosslinked po
mers~rubber!, with main- or side-chain mesogens, that c
spontaneously develop a nematic orientational order. Eve
the absence of fluctuations, they were predicted@14# and
later observed to display an array of fascinating phenom
@15#, the most striking of which is the vanishing of stress f
a range of strain, applied transversely to the nematic dir
tion. This striking softness is generic, stemming from t
spontaneous orientational symmetry breaking by the nem
state@14,16# that ensures the presence of a zero-energy G
stone mode, corresponding to the observed@17# soft distor-
tion and strain-induced director reorientation. The hidden
tational symmetry also guarantees the vanishing of one of
five elastic constants@16# that usually characterize harmon
deformations of a three-dimensional uniaxial solid@18#.
Thermal fluctuations lead to Grinstein-Pelcovits-like@19#
renormalization of elastic constants@14# in bulk systems
with dimensions below three in pure systems@20,21# and
below five when effects of the random network heterogene
are taken into account@22#. It is, therefore, likely, and indeed
we find that the elastic properties of a two-dimensional flu
tuating tensionless sheet of such a nematic elastomer d
qualitatively from those of the previously studied crystallin
membranes@1#. Our aim here is to explore the effects o
thermal fluctuations on this universality class of solid me
branes.

Our other motivation for exploring the physics of nema
elastomer membranes comes from an earlier discovery

n-
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Toner and one of us@23# that any amount of any kind o
in-plane anisotropy, a seemingly innocuous generalizat
significantly enriches the phase diagram of polymeriz
membranes. Most dramatically, it was predicted@23# that an
entire new phase of membranes, called the ‘‘tubule’’@24#
phase, always intervenes between the high-tempera
crumpled and low-temperature flat phases. The defin
property of the tubule phase is that it is crumpled in one
the two membrane directions but flat~i.e., extended! in the
other, with its thickness, roughness, and anomalous elast
displaying universal behaviors controlled by a nontrivial,
frared stable fixed point@23#. The tubule phase has sinc
been observed in Monte Carlo simulations@27# of non-self-
avoiding~i.e., phantom! anisotropic membranes with prope
ties ~the thickness, roughness, and Poisson ratio! in close
qualitative and quantitative accord with the predictions
Radzihovsky and Toner@23#.

Although it was anexplicit rotational symmetry breaking
~anisotropy! that was considered by the authors of Ref.@23#,
we expect a similar, but qualitatively distinct tubule phase
be also displayed by the spontaneously anisotropic elasto
membranes considered in this paper. However, we leave
subject of the global phase diagram, the elastomer tub
phase, and the phase transitions between it and the flat
crumpled phases for a future publication@28#. Here, we in-
stead focus on the formulation of models of nematically
dered elastomer membranes and the study of long-len
scale properties of its flat phase.

Past extensive investigations, both in the context of
fected crystalline membranes@29,30# and liquid crystals con-
fined in rigid gels~e.g., aerogels and aerosils! @31#, demon-
strated that arbitrarily weak heterogeneity qualitative
modifies the long-scale nature of liquid-crystal orders, me
branes morphologies, and elasticities. We, therefore, ex
that the local heterogeneity in an elastomer network will a
become qualitatively important on sufficiently long sca
and will likely dominate over the thermal fluctuation effec
that are the subject of this paper. However, here we cons
the idealized limit of elastomer membranes in which the
fective quenched disorder is sufficiently weak such that
effects are unimportant on scales shorter than some very
disorder-determined length scales. We leave the study
these heterogeneity effects for a future investigation@32#.

This paper is organized as follows. In Sec. II, we deve
two models for aD-dimensional nematically ordered fla
phase of elastomer membranes fluctuating ind dimensions
with d.D, one with uniaxial nematic order and the oth
with D-axial nematic order. They are referred to as t
uniaxial model and theD-axial model, respectively, in this
paper. For the physical case of interestD52, they reduce to
the same model, which we study in more detail in Sec. IV.
Sec. III, we investigate harmonic fluctuations of both mod
and show, in particular, that in-plane phonon fluctuations
D>3 have parts that are equivalent to those of smectic
uid crystal, a columnar liquid crystal, and a crystalline sol
In Sec. IV, we investigate the mean-field theory and h
monic fluctuations in physically realizable two-dimension
membranes embedded in a three-dimensional space. We
that harmonic fluctuations in these membranes do not
02110
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stroy the long-range in-plane nematic order in spite of
hanced fluctuations relative to an isotropic system aris
from the soft Goldstone mode. In Sec. V, we consider
effects of anharmonicities and develop ane5(42D) expan-
sion about the upper critical dimensionDc54 for two model
systems that have well-defined analytic continuations toD
52. In both models, we find similar flow equation for co
pling constants and an infrared-stable fixed point in wh
the bending modulusk is unrenmormalized and the in-plan
elastic modulil i j vanishes with wave numberq asqe.

II. MODELS

A. Notation: Reference and target spaces

Although physical membranes are two-dimensional ma
folds in a three-dimensional space, it is often useful to c
sider generalizations toD-dimensional manifolds embedde
in a d-dimensional space withd.D. Our interest is in solid
membranes, which, unlike fluid membranes, have a nonv
ishing shear modulus at least in their isotropic state.

To describe the geometry and fluctuations of these m
branes, we need to introduce a certain amount of notat
First, we define the reference spaceSR . This is the
D-dimensional space occupied by the membrane in its q
escent flat reference state. We denoteD-dimensional vectors
in this space in bold and their components with roman s
scripts i , j 51, . . . ,D . In particular, we denote intrinsic co
ordinates on the membrane by the vector

r5~x1 , . . . ,xD! ~2.1!

with componentsxi . The positionsr index mass points in a
Lagrangian description of the membrane. The membr
fluctuates in ad-dimensional target spaceST . We denote
vectors in the embedding space with overarrows and com
nents of these vectors with greek subscriptsm,n51, . . . ,d.
In particular, we describe the position inST of the mass point
labeled byr with the embedding vector

RW ~r !5@R1~r !, . . . ,Rd~r !# ~2.2!

with componentsRm(r ).
The reference spaceSR is identified as a subspace ofST .

The use of orthonormal basis vectors will simplify some
our discussion, and we introduced vectors êm in ST with
componentsêmn5dmn satisfying

êm•ên5dmn . ~2.3!

Any vector in ST can be decomposed into its componen
along these vectors. For example,RW 5Rmêm , where the sum-
mation convention on repeated indices is understood.
choose the set$êm% so that the subset of vectorsêi , i
51, . . . ,D lie in SR , which we represent as a subspace
ST . Thus,

êi•êi5d i j , ~2.4!
8-2
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êm•êi5dm i5H 1 if i 5m<D

0 if m5D11, . . . ,d.
~2.5!

We choose length scales such that the position inST of the
point r in the reference membrane is

RW ref5xi êi , ~2.6!

describing a perfectly flat membrane configuration. Positi
RW (r ) of the distorted membrane can be described by
D-dimensional in-plane phonon fieldu(r ) and a
d2D[dc-dimensional out-of-plane undulation~height! field
hW (r ):

RW ~r !5(
i 51

D

@xi1ui~r !#êi1 (
k51

dc

hk~r !êk1D . ~2.7!

Local distortions of the membrane can be expressed
terms of thed3D-dimensional deformation tensorL= @33#
with components

Lm i5
]Rm

]xi
[] iRm . ~2.8!

In the flat reference state,

Lm i
ref5

]Rref,m

]xi
5dm i . ~2.9!

Under independent rotations in the target and refere
spaces,Lm i transforms as

Lm i→OTmnLn jOR ji
21 , ~2.10!

whereOTmn is a d3d rotation matrix inST and ORi j is a
D3D rotation matrix inSR .

Since RW is a Euclidean vector, the metric tensor, whi
measures distances between neighboring points viadR2

5gi j dxidxj , for a membrane is

gi j 5
]RW ~r !

]xi
•

]RW ~r !

]xj
. ~2.11!

In the reference flat phase,gi j 5gi j
ref5Lm i

refLm j
ref5d i j . We

will denote tensors inSR with a double underscore. Thus, th
metric tensor isg

=
. The Lagrangian strain tensoru= , with com-

ponentsui j 5gi j 2gi j
ref , measures the local change in sepa

tions of nearby points in distorted states characterized
RW (r ) relative to those of the undistorted, flat state charac
ized byRW ref :

dR22dRref
2 52ui j dxidxj . ~2.12!

Using Eq.~2.7!, the strain can be expressed in terms of
phonon and height fields as
02110
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ui j 5
1

2
~gi j 2gi j

ref!5
1

2
S ]RW

]xi
•

]RW

]xj
2d i j D 5

1

2
~] iuj1] jui

1] iu•] ju1] ihW •] jhW !. ~2.13!

B. The model Hamiltonian

As discussed in the Introduction, internally isotropic so
membranes have been extensively studied@1#. In contrast to
liquid membranes and one-dimensional polymer analo
they admit a flat phase, characterized by an infinite orien
tional ~in embedding space! persistence length that is stab
to thermal fluctuations. The long-wavelength free-ene
density for distortions of such spontaneously flat phase
given by

FI5Fbend1Fstretch, ~2.14!

where

Fbend5
k

2
~¹2hW !2 ~2.15!

and

Fstretch5
l

2
~Tru= !21m~Tru= 2! ~2.16a!

5
B

2
~Tru= !21m~Tru=̃ 2!, ~2.16b!

wherek is the membrane’s bending rigidity@2#, l andm are
the Lamécoefficients characterizing the in-plane elastici
B5l12m/D is the bulk elastic modulus, and

ũi j 5ui j 2
1

D
~Tru= !d i j ~2.17!

is the symmetric-traceless part of the strain tensor with Tu=̃
50. Earlier studies of non-liquid-crystalline polymerize
membranes@5,6,12# have demonstrated that thermal fluctu
tions produce wild undulations about the flat stateRW ref that
make elastic nonlinearities in the height fieldhW ~but not in
the in-plane phonon fieldsu) in ui j , Eq.~2.13!, important on
long length scales and lead to universal length-sca
dependent elastic moduli:k(q);q2hk, l(q);qhm, and
m(q);qhm. One of the most important consequences of t
is that the thermally driven upward renormalization of t
bending rigidityk stabilizes the low-temperature flat pha
of two-dimensional@8# membranes against these very sa
fluctuations@5,6,12#.

The free-energy density of Eq.~2.14! provides a correct
description of elastic and height fluctuations of a membra
as long as the equilibrium phase is truly an isotropic fl
phase. If, however, the shear modulusm becomes suffi-
ciently small, the membrane becomes unstable to spont
ous in-plane distortions that break rotational symmetry ofSR
@14,16,28#. In the presence of such instability the distortio
is stabilized by a nonlinear strain energyFNL and an in-plane
8-3
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curvature energyFcurv, neglected inFI , Eqs.~2.14!–~2.16!.
The in-plane curvature energy, which stabilizes the sys
against spatially nonuniform distortions is simply

Fcurv5
1
2 K~¹2u!2. ~2.18!

The important low-order contributions to nonlinear strain e
ergy are

FNL5bTru=Tru=̃ 22CTr~u=̃ !31g~Truu=̃ 2!2. ~2.19!

Terms of orderu= 5 or higher and terms proportional to (Tru= )3

and (Tru= )2Tru=̃ 2 could also be added but are qualitative
innessential for our present discussion.

C. Spontaneously anisotropic phases

When m becomes sufficiently small in the presence
FNL , a membrane will undergo a transition@14,16,28# to a
new anisotropic, spontaneously stretched equilibrium s
with a nonvanishing equilibrium strainu= 0, an anisotropic
deformation tensorLm i

0 that differs fromLm i
ref5dm i , and po-

sition vectorsR0,m5Lm i
0 xi . The most general form ofLm i

0

can be obtained via target- and reference-space rotations
~2.10!, of the deformation tensor:

Lm j
0 5H L i j

0 i f m5 i 51, . . . ,D

0 if m5D11, . . . ,d,
~2.20!

resulting from a distortion without rotation in theSR sub-
space ofST . Here L i j

0 are the components of theD3D
matrix L= 0, restricted to the plane of the original referen
spaceSR . The new equilibriumL= L0 yields a new metric
tensorgi j

0 5Lm i
0 Lm j

0 and a nonvanishing equilibrium strai
relative to the original isotropic flat membrane:

ui j
0 5

1

2
~Lm i

0 Lm j
0 2d i j !. ~2.21!

The simplest anisotropic state that can form is the unia
one in which the original isotropic membrane is stretch
~compressed! along a single direction inSR and compressed
~stretched! along the others. Because the reference stat
isotropic, the direction of stretching, specified by a unit ve
tor n0 with componentsni

0 , is arbitrary in the planeSR , and
we could take it without loss of generality to be along one
the basis vectors, sayê1. The vectorn0 also exists in the
target spaceST . It has componentsnm

0 that are equal toni
0

for m5 i 51, . . . ,D and zero form.D. Thus, in the uniaxial
case,

L i j
0 5~L0uu2L0'!n0in0 j1L0'd i j . ~2.22!

Under rotations inST andSR , this becomes

Lm i
0 5~L0uu2L0'!nm

Tni
R1L0'êm

T
•êi

R , ~2.23!

where we usedd i j 5ên i ên j and wherenm
T5OTmnn0n , ênm

T

5OTm i ên i , ên i
R 5O i j

Rên j , andni
R5O i j

Rn0 j .
02110
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The opposite limit of the uniaxial anisotropic state is t
full D-axial state in which there is unequal stretching in allD
directions in the plane. In this case,

L i j
0 5 (

k51

D

L0kekiek j ~2.24!

with all L0k different.
As discussed in detail in Ref.@16#, the spontaneous bro

ken symmetry described by the above deformation tens
leads to the vanishing of certain shear moduli of the distor
solid. Distortions relative to the new anisotropic state a
measured by the displacement and height vectors,u8(r 8) and
hW (r 8), defined via

RW 8~r 8!5r 81u8~r 8!1hW ~r 8![RW ~r !, ~2.25!

where by definitionr 85RW 0 , u8(r 8) is theD-dimensional in-
plane displacement vector, andhW (r ) is the dc-dimensional
(dc5D2d) height variable orthogonal tou8. The strain ten-
sor relative to the new state,

ui j8 5
1

2 S ]Rm

]xi8

]Rm

]xj8
2d i j D , ~2.26!

expressed in terms of the strain tensoru= relative to the origi-
nal state is

u=5u= 01L= 0
Tu8L= 0 . ~2.27!

The strain Hamiltonian density to harmonic order for t
uniaxial case

F strain
uni 5 1

2 (
i j

l i j
uniuii8uj j8 1m'ui j8

'ui j8
' , ~2.28!

where the Einstein convention is not used in the first term
the right hand side~but is in the second!,

ui j8
'5d ik

T ukl8 d l j
T , ~2.29!

d i j
T 5d i j 2n0in0 j , ~2.30!

and

l i j
uni5l1d i1d j 11l3~12d i1!~12d j 1!1l2@d i1~12d j 1!

1d j 1~12d i1!#, ~2.31!

where the values ofl1 , l2, andl3 depend on the potential
of the original Hamiltonian andL0= . This form makes it clear
that l i j is actually a subset of a fourth-rank tensor and no
true second-rank tensor. The bending and curvature ene
become anisotropic with

Fbend5
1
2 k i j ] i8

2hW •] j8
2hW , ~2.32!

Fcurv5
1
2 Ki j ] i8

2u8•] j8
2u8, ~2.33!
8-4
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where the anisotropic bending and curvature moduli can
expressed, respectively, ask i j 5kAi j

uni , and Ki j 5KAi j
uni,

where

Ai j
uni5L0uu

4 d i1d j 11L0'
4 ~12d i1!~12d j 1!1L0uu

2 L0'
2 @d i1~1

2d j 1!1d j 1~12d i1!#. ~2.34!

In the full D-axial case, there is no residual plane that c
support shears, and the harmonic free-energy density
pends only on the diagonal parts of the strain:

F strain
D-axial5 1

2 (
i j

l i j uii8uj j8 , ~2.35!

with l i j being a symmetric matrix with allD(D11)/2 inde-
pendent entries different. Again, the Einstein convention
suspended in this equation. The bend and curvature ene
have the same form as Eqs.~2.33!, but Ai j

uni is replaced by

Ai j
D-axial5L0i

2 L0 j
2 . ~2.36!

We note that in the most general case that is compatible
theD-axial symmetry, allD(D11)/2 components ofAi j

D-axial

are independent of each other.
The total Hamiltonian density for a nematic elastome

membrane is

F5Fstrain1Fbend1Fcurv. ~2.37!

We have expressedFstrain only to harmonic order in the non
linear strainui j even though nonlinear terms in the origin
isotropic energy are essential to stabilize the system afte
nematic order develops@16#. As we shall see in Sec. V, nea
four dimensions, anharmonic terms in the nonlinear stra
associated with in-plane phonons are subdominant@irrel-
evant in the renormalization-group~RG! sense# to nonlin-
earities in the height undulationshW and we will ignore them
in what follows. This is in strong contrast to bulk nema
elastomers, where such phonon nonlinearities cannot be
nored and must be treated nonperturbatively@20,21#.

In two dimensions, which we consider in more detail
the Sec. IV, there is only one direction, say they direction,
perpendicular to the direction of order, andui j8

'

5d iyd jyuyy8 . Thus, the second term in Eq.~2.28! can be
absorbed into the first term, which depends only on diago
components ofui j . Thus, in two-dimensional~2D!, the free
energy density has the same form as Eq.~2.35!, and is most
naturally analytically continued fromD-axial generalization
of a nematic elastomer membrane.

III. HARMONIC THEORY

The two~uniaxial andD-axial! nematic membrane Hamil
tonians introduced in the preceding section have complica
anisotropies, associated with spontaneous in-plane nem
order, that lead to the membrane’s highly anisotropic con
mational correlations. In this section, we will investiga
fluctuations in the harmonic approximation to these mod
These harmonic results will be necessary in our subseq
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discussions in Sec. V on the important effects of nonlinea
ties in the presence of fluctuations. To simplify the notatio
in this section we will drop primes appearing in the stra
and phonon fieldsui j8 andu8 measured relative to the nem
atic state and denote them byui j andu, not to be confused
with physically distinct unprimed quantities of the precedi
section.

The harmonic Hamiltonians for the uniaxial andD-axial
models have a longitudinal-strain and height elastic parts
scribing the cost of simple shear modes:

H L
05

1

2E dDq

~2p!D F (
i , j 51

D

@l i j qiqj1d i j K~ q̂!q4#uiuj

1k~ q̂!q4 (
i 5D11

d

hihi G , ~3.1!

where

K~ q̂!5(
i j

Ki j q̂i
2q̂ j

2 , ~3.2!

k~ q̂!5(
i j

k i j q̂i
2q̂ j

2 , ~3.3!

with q̂i5qi /q. In uniaxial systems, there is in addition
shear part in the (D21)-dimensional plane perpendicular
the unique directionn0:

H T
05m'E dDxui j

'ui j
'→ 1

2
m'E dDq

~2p!D @q'
2 ui

'ui
'

1q' iq' jui
'uj

'#, ~3.4!

whereu' is the part of the vectoru in the plane perpendicu
lar to n0 . u' hasD21 components. Thus inD52, u' has
only one component, sayuy , ui j

'5uyy and the two models
are equivalent.

In both models, at harmonic level, height and phon
variables decouple and the height correlation function is s
ply

Ghihj
5d i j

P 1

k~ q̂!q4
, ~3.5!

whered i j
P is the projection operator onto thedc-dimensional

subspace perpendicular to the reference membrane.

A. Uniaxial case

In the uniaxial case,u can be decomposed into comp
nents along the uniaxial directionn0 and along directions
parallel and transverse to the wave vectorq' in the plane
perpendicular ton0:

ui5unn0i1uLq̂' i1uti , ~3.6!
8-5
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where n0•ut50 and q'•ut50. We will represent this de
composition asui5(un ,ul ,ut). The u-correlation function
can then be decomposed as

Gi j 5Gnnn0in0 j1GLLq̂' i q̂' j1GnL~n0i q̂' j1n0 j q̂' i !

1Gt~d i j
T 2q̂' i q̂' j !. ~3.7!

The transverse part ofGi j decouples from the others and
easily calculated as

Gt5
1

m'q'
2

. ~3.8!

The Hamiltonian for theun anduL components can be writ
ten as

H5
1

2E dDq

~2p!DũaGab
21ũb , ~3.9!

whereũ5(un ,uL) and

G215S l1quu
21K~ q̂!q4 l2quuq'

l2quuq' l̄3q'
2 1K~ q̂!q4D , ~3.10!

where l̄35l31m' with L i defined in Eq.~2.31!. In the
long-wavelength limit, terms of orderquu

4 and quu
2q'

2 can be
neglected relative toquu

2 , and thenn entry in G21 is effec-
tively l1quu

21K'q'
4 , which is the inverse of the propagato

for fluctuations in a smectic liquid crystal. Similarly, in th
long-wavelength limit, theLL part of G21 is effectively
l̄3q'

2 1K uuquu
4 , which is the inverse propagator for one com

ponent of displacement fluctuations in a columnar liqu
crystal. Thus, whenl250, G21 decomposes into two inde
pendent parts, one of which is identical to the inverse pro
gator of a smectic liquid crystal and the other of which
identical to one component of the propagator of a colum
liquid crystal. We will find below that this property survive
the turning on ofl2 though with different coefficients.

Equation~3.10! is easily inverted to yield

G5
1

D S l̄3q'
2 1K~ q̂!q4 2l2quuq'

2l2quuq' l1quu
21K~ q̂!q4D , ~3.11!

where

D5detG215Dl̄q'
2 quu

21~l1quu
21l̄3q'

2 !K~ q̂!q41•••,
~3.12!

with Dl̄5l1l̄32l2
2. It is can be shown~see the Appendix

for discussion in two dimensions! that Gnn is dominated at
small q by the region withquu;q'

2 so that

Gnn5
l̄3q'

2 1K~ q̂!q4

D
→ 1

l18quu
21K'q'

4
, ~3.13!
02110
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where l185Dl̄ /l̄35l12l2
2/l̄3 , K'5L(L0')4. Similarly,

GLL is dominated byq''quu
2 at smallq and

GLL5
l1quu

21K~ q̂!q4

D
→ 1

l38q'
2 1K uuquu

4
, ~3.14!

wherel385Dl̄ /l1 , K uu5K(L0uu)
4.

Thus we find that, within the harmonic approximation, t
translational lower critical dimension is determined by t
dominant smecticlike fluctuations ofun modes and is equa
to D53. The subdominant columnarlike modesuL become
important only belowD55/2, while the transverse fluctua
tions ut only grow with length scale forD<2.

B. D-axial systems

In D-axial systems, the strain energy is given by E
~2.35! with D(D11)/2 independent components forl i j .
The harmonic Hamiltonian is then given by Eq.~3.1! with no
transverse contributions. The height fluctuations are the s
as in the uniaxial case with the appropriate expression
k(q̂). The inverse phonon propagator is

G215S l1q1
21K~ q̂!q4 . . . l1Dq1qD

A � A

l1Dq1qD . . . lDqD
2 1K~ q̂!q4

D .

~3.15!

G can be obtained by invertingG21 using minors:Gi j 5

(21)i 1 j D̃ j i /D, whereD5detG21 and D̃ i j is the determi-
nant of the minor ofG21 obtained by deleting rowi and
column j. The results for the long-wavelength diagonal a
off-diagonal components ofGi j are, respectively,

Gii '
1

l i i8qi
21K~ q̂!q4

, ~3.16a!

Gi j '
~21! i 1 j D̃l

j i qiqj

Dlqi
2qj

21K~ q̂!q4~D̃l
i i qj

21Dl
j j qi

2!
, ~3.16b!

where, as before,Dl is the determinant ofl, D̃l
i j is the

determinant of thei j minor of l, and l i i8 5detDl /D̃l
i j .

Thus, the diagonal componentsGii have the structure of a
smectic propagator, with all terms involvingqi in K(q̂)q4

subdominant in the long-wavelength limit.

IV. TWO-DIMENSIONAL MEMBRANES

As discussed in the Introduction, real membranes are t
dimensional manifolds, with reference-space coordinater
5(x1 ,x2), fluctuating in a three-dimensional space with c
ordinatesRW 5(R1 ,R2 ,R3). Because of their low dimension
ality, these membranes have a number of special proper
some of which we will investigate in this section. In partic
lar, we will study the transition from an isotropic to a nem
atically ordered membrane, which, because of the absenc
8-6
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a third-order invariant for two-dimensional symmetri
traceless tensors is of second order in mean-field theory.
treatment will review in a two-dimensional context th
mechanism for the emergence of soft elasticity in the ne
atic phase. We will also consider harmonic fluctuations ab
the flat nematic state in some detail and show that they
to short-ranged positional correlations, but allow for a sta
long-range orientational~nematic! in-plane order of the
membrane.

A. The two-dimensional Hamiltonian

Our starting point is the elastic energy of an isotrop
two-dimensional membrane augmented by nonlinear ela
terms necessary to stabilize the nematic state that deve
when the shear modulus becomes negative. A simplify
feature special to two dimensions is that the strain tensoru= is
a 232 matrix with no independent cubic invariant. The co
responding Hamiltonian is

F5
k

2
~¹2h!21

K

2
~¹2u!21

B

2
~Tru= !21mTru=̃ 21bTru=Tru=̃ 2

1g~Tru=̃ 2!2 ~4.1a!

5
k

2
~¹2h!21

K

2
~¹2u!21

B

2 S Tru=1
b

B
Tru=̃ 2D 2

1S g2
b2

2BD
3S Tru=̃ 21

m/2

g2b2/~2B!
D 2

. ~4.1b!

To simplify our discussion, we have left out the cubic a
quartic terms, (Tru= )3, (Tru= )4 and (Tru= )2(Tru=̃ 2), as well as
higher-order nonlinearities inu= . The inclusion of these
terms, which are quantitatively smaller than the terms
have in the nearly incompressible~large B) limit, will not
qualitatively modify our results.

The nonlinear strain tensorui j
0 , Eq. ~2.21!, associated

with the spontaneous deformation in the nematic state
easily be found by minimizing the effective energy, Eq.~4.1!.
Since Tru=̃ 0

2 is greater than or equal to zero, its value Tru=̃ 0
2 at

equilibrium is zero as long asm.0. In this case, Tru= 0 is also
zero. Whenm,0, Tru=̃ 0

2 and Tru= 0 become nonzero with val
ues

Tru=̃ 0
25

Bumu

2Bg2b2
, ~4.2a!

Tru= 052
b

B
Tru=̃ 0

2 ,

52
bumu

2Bg2b2
. ~4.2b!

By choosing axes so that the anisotropic stretching is al
thex axis, we can expressu= 0 andu=̃ 0 in terms ofL0x andL0y
as
02110
ur

-
ut
d

e

tic
ps
g

e

n

g

u= 05
1

2 S L0x
2 21 0

0 L0y
2 21

D , ~4.3a!

u=̃ 05
1

4
~L0x

2 2L0y
2 !S 1 0

0 21D . ~4.3b!

From this and

u= 05
1

2
~Tru= 0!I=1u=̃ 0 ~4.4a!

5
1

2
~Tru= 0!I=1

1

2
A2Tru=̃ 0

2S 1 0

0 21D ,

~4.4b!

we obtain

L0x5~11Tru=̃ 01A2Tru=̃ 0
2!1/2, ~4.5!

L0y5~11Tru=̃ 02A2Tru=̃ 0
2!1/2, ~4.6!

where Tru=̃ 0 and Tru=̃ 0
2 are given in Eq.~4.2!.

We can now write the free energyF, Eq. ~4.1!, into a
more convenient form,

F5
k

2
~¹2h!21

K

2
~¹2u!21

B

2
~Tru=2Tru= 0!21g~Tru=̃ 2

2Tru=̃ 0
2!21b~Tru=2Tru= 0!~Tru=̃ 22Tru=̃ 0

2!, ~4.7!

which makes it transparent thatF is minimized byu=5u= 0 and
that permits a straightforward expansion about the gro
state.

Using Eq. ~2.27!, we can now easily express the fre
energy density of Eq.~4.7! in terms of the strainu= 8 relative
to the new stretched equilibrium state. First, we observe

Tru=2Tru=05TrL= 0
2u8, ~4.8a!

Tru=̃ 22Tru=̃ 0
252Tr~u=̃ 0L= 0

2u= 8!1Tr~L= 0
2u= 8!22 1

2 ~TrL= 0
2u= 8!2

' 1
2 ~Lox

2 2L0y
2 !~L0x

2 uxx8 2L0y
2 uyy8 !. ~4.8b!

The final expression, valid to a linear order inu= 8, does not
depend onuxy8 —a property, whose origin is the spontaneo
broken rotational symmetry of the nematic phase, that is
sponsible for the vanishing of the membrane shear modu
Using Eq.~4.8! in Eq. ~4.7!, replacing] i by ] i85L0i j ] j , and
retaining only the dominant terms in] iu, we obtain

F5 1
2 kxx~]x

2h!21 1
2 kyy~]y

2h!21kxy~]x
2h!~]y

2h!

1 1
2 Ky~]y

2ux!
21 1

2 Kx~]x
2uy!21 1

2 lxuxx
2 1 1

2 lyuyy
2

1lxyuxxuyy , ~4.9!

where to streamline our notation we again drop primes
replacingu= 8 with u= and] i8 with ] i . The strains are the usua
nonlinear strains relative to the new reference state, whic
8-7
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a linear order are simplyuxx5]xux anduyy5]yuy . The bare
elastic coefficientsk ’s, K8s, andl ’s are determined by the
parameters of the original Hamiltonian andL= 0:

kxx5L0x
4 k,

kxy5L0x
2 L0y

2 k,

kyy5L0y
4 k,

Kx5L0y
4 K,

Ky5L0x
4 K,

lx5L0x
4 @B1b~L0x

2 2L0y
2 !1 1

2 g~L0x
2 2L0y

2 !2#,

ly5L0y
4 @B2b~L0x

2 2L0y
2 !1 1

2 g~L0x
2 2L0y

2 !2#,

lxy5L0x
2 L0y

2 @B2g~L0x
2 2L0y

2 !2#. ~4.10!

B. Fluctuations and correlations of the Harmonic model

We study fluctuations of nematically ordered elastom
membranes within a harmonic approximation for the phy
cally realizable case ofD52 and d53. In this case, the
displacement vectoru has two components and the heig
has a single componenth. Within this approximation all cor-
relation functions are related to the harmonic two-point c
relation functions@34#

Gh
0~r !5^h~r !h~0!&05E d2q

~2p!2 eiq•rGh
0~q!,

~4.11a!

Gi j
0 ~r !5^ui~r !uj~0!&05E d2q

~2p!2 eiq•rGi j
0 ~q!,

~4.11b!

expressed in terms of corresponding ‘‘propagators’’Gh
0(q)

and Gi j
0 (q). As usual, the averages are computed usin

Boltzmann weightZ0
21e2H0[h,u] ~for convenience usingkBT

as the energy unit! by integrating over phononu and height
undulation h fields, with Z05*DhDue2H0 the partition
function and H0 the harmonic effective HamiltonianH0
5*d2xF0@h,u# obtained from effective Hamiltonian,H
5*d2xF@h,u# by neglecting all elastic nonlinearities ap
pearing in Eq.~2.13!.

The height propagatorGh
0(q) is given by Eq.~3.5! and the

phonon propagatorGi j
0 (q) by Eq. ~3.16! specialized to two

dimensions:

Gxx
0 ~q!5

1

lx8qx
21Kyqy

4
, ~4.12a!

Gyy
0 ~q!5

1

ly8qy
21Kxqx

4
, ~4.12b!
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Gxy
0 ~q!52

lxyqxqy

Dlqx
2qy

21K~ q̂!q4~lyqy
21lxqx

2!
,

~4.12c!

where

lx,y8 5lx,yS 12
lxy

2

lxly
D . ~4.13!

Stability requireslx.0, ly.0, andlxly2lxy
2 .0. lx8 and

ly8 both go to zero linearly inlxly2lxy
2 . The dominant

parts of theux and uy correlation functions are identical in
form to the displacement correlation functions of a tw
dimensional smectic, which have been extensively stud
@35#. Both ^ux

2& and ^uy
2& diverge with system size:

^ux
2&54E

2p/Lx

` E
2p/Ly

` dqxdqy

~2p!2 Gxx
0 ~q!

5
1

lx8
A Lx

2pax
cu~2paxLx /Ly

2!

55
1

A2plx8
A Lx

2pax
if Ly

2@2paxLx

1

~2p!2

1

lx8

Ly

ax
if Ly

2!2paxLx ,

~4.14!

wherecu(z) is a crossover function. The expression for^uy
2&

is obtained by interchangingx andy in the equation for̂ux
2&.

The anisotropy lengthsax anday are defined as

ax5~Kx /lx8!1/2, ~4.15a!

ay5~Ky /ly8!1/2. ~4.15b!

They diverge as the stability limitlxly5lxy
2 is approached.

The connected phonon correlation functions at two s
tially separated points are

Ci j
0 ~r !5^@ui~r !2ui~0!#@uj~r !2uj~0!#&0 . ~4.16!

For an infinite membrane

Cxx
0 ~r !52E dqxdqy

~2p!2
Gxx

0 ~q!~12eiq•r !

5
1

lx8
A uxu

pax
e2y2/(4axuxu)1

1

2lx8

uyu
ax

erfS uyu

2Aaxuxu
D ,

;5
1

lx8
A uxu

pax
if uyu!2Aaxuxu

1

lx8

uyu
ax

if uyu@2Aaxuxu,

~4.17!
8-8
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where erf(x) is the error function. The strong power-la
growth of Gii

0 (r ) indicates that thermal fluctuations lead
arbitrarily large relative displacements of two points dista
on the membrane, again contrasting with the usual logar
mic growth with r in two-dimensional orderedxy-like sys-
tems.

The stability of the spontaneous nematic~uniaxial! order
can be analyzed by examining the rms fluctuations of
nematic director fielddn(r ). Since in the nematic state, th
director is ‘‘massively’’ tied to theantisymmetricpart of the
displacement gradient tensorh i j 5] jui @16#, orientational
fluctuations can be computed from those of phonon fluct
tions. To a linear order in rotations of the directorn away
from its preferred orientation along thex axis, dny5u
5 1

2 (]xuy2]yux). The angle correlation function is then

Guu~q!5 1
4 @qy

2Gxx
0 ~q!1qx

2Gxx
0 ~q!22qxqyGxy

0 ~q!#.
~4.18!

It is clear from Eqs.~4.12a!–~4.12c! that within the harmonic
approximation in-plane orientational fluctuations are finite

Turning to membrane out-of-plane fluctuations, we fi
that at harmonic level local rms undulations^h(r )2&0 behave
in the same manner as those of polymerized membranes

^h~r !2&05dcE
2p/Lx

E
2p/Ly

dqxdqy

2p
Gh

0~q!

5
dc~2pLx!

2

k
chS Lx

Ly
D , ~4.19!

where for simplicity we specified the case of isotropic ben
ing rigidity k and defined scaling function

ch~z!54E
1

`

dxE
z

`

dy
1

~x21y2!2
, ~4.20!

with crossover property

ch~z!→H 2p z→0

2p

z2
z→`.

~4.21!

As in crystalline membranes, the strongL2 growth im-
plies instability of the flat phase to thermal fluctuations,
well as the importance of anharmonic elasticities, which~as
in polymerized membranes! can stabilize the flat phase. Fu
thermore, in contrast to polymerized membranes, here
power-law divergent, smecticlike in-plane phonon corre
tions that we found above, Eq.~4.17!, suggest that phonon
elastic nonlinearities in Eq.~2.13! may be important as well
We turn to these questions in the next two sections.

V. ANHARMONICITIES AND THE e EXPANSION

As discussed in Sec. II, rotational invariance in the tar
space requires the elastic free energy to be expresse
terms of nonlinear rather than linear strains. The result is
there are anharmonic couplings in the elastic energy b
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among phonon fields and between phonon and height fie
The violent power-law fluctuations of these fields, the heig
field in particular, lead, as in other membranes syste
@9–12#, to divergences with system sizeL of perturbations in
anharmonic couplings for membranes with spatial dimens
D less than the critical valueDc . In this section, we conside
the interplay between fluctuations and anharmonic coupli
in D-dimensional nematic elastomer membranes embed
in a d-dimensional space and show that the perturbat
theory breaks down belowDc54. We then study the anoma
lous elasticity of these membranes in ane expansion about
D54. Our interest is in developing an insight into the pro
erties of real two-dimensional membranes. We, therefo
consider only those models that have a straightforward a
lytic continuation toD52. The two models we consider ar
the fully anisotropicD-axial elastomer, which has no surviv
ing shear modulus, and the uniaxial model in which we
the shear modulusm' , Eq. ~2.28!, for shears in the plane
perpendicular to the nematic direction to zero. These t
models are equivalent in the physical limit ofD52.

A. Perturbative analysis of elastic nonlinearities

The elastic free energyF, Eq. ~2.37!, contains nonlineari-

ties associated with membrane undulations~involving hW

field! and in-plane phonon nonlinearities. The importance
undulation nonlinearities is a consequence of the me
brane’s vanishing tension~softness of out-of-plane undula
tions, controlled by curvature, rather than the surface tens
energy!. As in an isotropic polymerized membrane@5,6,12#,
undulation nonlinearities become relevant when the dim
sion of the reference space is lower than four. To illustr
this point, we calculate the perturbative corrections to ela
constantsl i j from undulation nonlinearities which are repr
sented by Fig. 1~a!:

FIG. 1. Feynman diagrams renormalizing elastic constantsl ’s

~a!, k ’s ~b!, andK ’s ~c!. Solid lines denote undulation fieldshW and
dashed lines denote phonon fieldsu.
8-9
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dl i j
h 52

1

2 (
k,l

D

l ikl j l E dDq

~2p!D
qk

2ql
2@Gh

0~q!#2

52
dcL

42D

2~42D ! (
k,l

D

l ikl j l E dVD

~2p!D

q̂k
2q̂l

2

k2~ q̂!
, ~5.1!

where we assumed that the system has an equilibrium
figuration ofD-dimensional sphere~disk in two-dimensional
case! with radiusL. dVD is the differential surface elemen
of the D-dimensional unit sphere. Quite clearly, forD,4,
the fluctuation correctionsdl i j diverge with system sizeL.
The associated nonlinear length scale, beyond which th
corrections become comparable tol i j and the perturbation
method breaks down, is given by

LNL
h .S ~42D !k̄2

l
D 1/(42D)

, ~5.2!

wherel is the typical value ofl i j and 1/k̄2 is defined as the
angular integral in Eq.~5.1!.

If the modulusm' for shears in the direction perpendic
lar to the anisotropy axis in the uniaxial model is zero, th
fluctuations inut Eq. ~3.6! have the sameq24 harmonic-
theory divergence as height fluctuations, but withK(q̂) re-
placingk(q̂). Thus, whenm'50, bothhW andut contribute
to divergences inl i j below D54. This point was missed in
the analysis of the fixed-connectivity-fluid fixed point in Re
@6#.

As discussed in the Introduction, the spontaneously b
ken in-plane rotational symmetry of the nematic elastom
membrane leads to soft in-plane elasticity. As a result,
strong contrast to isotropic or crystalline membranes,
plane nonlinearities inF, Eq. ~2.37!, also correct the elastic
moduli l i j . Its contributiondl i j

u , as represented by diagra
Fig. 1~c!, is given by

dl i j
u 52

1

2 (
k,l

D

l ikl j l E dDq

~2p!D
qk

2ql
2(

mn

D

uGmn
0 ~q!u2.

~5.3!

In the D-axial model, the dominant fluctuations inGnm
0 are

smecticlike, and it is straightforward to show that they cau
the above correction tol i j

u to diverge asL (32D)/2 below D
53 if the phonon fluctuations retained their harmonic ch
acter down toD53. In contrast in the uniaxial~analytical
continuation! model, the contributions todl i j

u due tout fluc-
tuations diverge belowD54 when m'50, as discussed
above. Thenn part of Gnm

0 is, however, smecticlike and di
verges more weakly asL (32D)/2.

A similar calculation shows that the perturbative corre
tion to in-plane elastic constantsKi j is dominated by in-plane
nonlinearities and also diverges below three dimensio
Thus, the upper critical dimension for undulation nonlinea
ties is four, while in-plane nonlinearities become releva
belowD53. For 3,D,4, in-plane nonlinearities are irrel
evant and, consequently, in-plane curvature energy mo
Ki j are only renormalized finitely.
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Undulation nonlinearities renormalize bending rigiditi
k i j as well as in-plane elastic constantsl i j . One would ex-
pect that as in the case of isotropic polymerized membra
the perturbative corrections tok i j also diverge asL42D. This
is, however, not true, as one can see from the follow
argument. Note that if we neglect in-plane nonlinear ter
~which is legitimate above three dimensions! in Eq. ~2.37!
and setKi j to be zero, we can integrate out the phonon fie
completely and what is left is only the bending ener
( i j k i j (] i

2hW •] j
2hW ) without any nonlinearities. Thus, ther

should be no anomalous elasticity for bending rigidityk i j , if
there are no in-plane curvature rigiditiesKi j . This implies
that, in the presence ofKi j , renormalization of bending ri-
gidities k i j is dominated by anisotropic, smecticlike mode
for which in-plane curvature rigiditiesKi j are important, and
the critical dimension below whichk i j is infinitely renormal-
ized is three, as in smectic liquid crystals.

The outcome of the above discussion is that nearD54 in
the D-axial model, all in-plane nonlinearities inu are irrel-
evant and in the uniaxial model nonlinearities inun anduL
are irrelevant. Consequently, to capture the long-wavelen
behavior we can use simplified expressions for the full n
linear strain tensors, given by

D2axial:ui j → 1
2 ~] iuj1] jui1] ihW •] jhW !, ~5.4a!

uniaxial:ui j → 1
2 ~] iuj1] jui1] ihW •] jhW 1] iut•] jut!.

~5.4b!

The effective Hamiltonian for studying membranes withou
shear modulus isF, Eq. ~2.37!, with m'50 and one of the
above reduced strains.

The difference between this model free energy and tha
isotropic polymerized membranes@5,6#, as well as that of
fixed-connectivity-fluid membranes@6#, should be stressed
First, the bare elastic constantsk i j and l i j are anisotropic
rather than isotropic, and the anisotropy inl i j cannot be
eliminated by a simple rescaling of lengths. Second a
more importantly, the energy cost for shear in the planes
anisotropy iszero because of the spontaneous broken sy
metry of the nematic state. Thus, our model free energy,
~2.37!, is not a simple anisotropically scaled generalizati
of fixed-connectivity fluid@6#. The matrix of coupling con-
stantsl i j is such that the elastic energy cannot be reduce
that of density variation alone.

B. Renormalization group and „4ÀD… expansion

In isotropic membranes belowD54, height fluctuations
lead to anomalous elasticity@9–12# with bending modulus
and elastic modulus, respectively, diverging and vanish
with wave number as

k~q!;q2hk, l~q!;qhl, ~5.5!

where the exponentshk and hl are related via the Ward
identity @6#

2hk1hl5e542D. ~5.6!
8-10
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We have just argued thatk is not renormalized for dimen
sions near four in the models without shear moduli that
are considering. Thus,hk50 andhl5e. In this section, we
will show explicitly within a RG calculation that this is in
deed the case in both models we consider.

We use standard momentum-shell renormalization-gr
procedures, integrating out a shell in momentum space w
L/el,q,L, whereL is the ultraviolet cutoff, to produce
fields u,(r ) andhW ,(r ) with wave numbers with magnitud
q,e2 lL. We then rescale lengths and fields according t

r5r 8el , ~5.7!

ui
,~r !5ex i lui8~r 8!, ~5.8!

hW ,~r !5ef lhW 8~r 8!, ~5.9!

so as to restore the ultraviolet cutoff to its original valueL.
In the uniaxial case, we decomposeu as in Eq.~3.6! and
choosexn5xL5x and x t different from x. In the D-axial
case, we can choose all thex i to be equal tox. It is conve-
nient to choose the rescaling so as to preserve the nonli
form of the strainui j , Eq. ~5.4!. This requires

x52f2152x t21. ~5.10!

The integration over the high-wave-vector components
u andhW can be performed perturbatively in nonlinearities
Hamiltonian, in a procedure very similar to that of the p
turbative analysis. The Feynman graph giving one-loop c
rections tol i j is shown in Fig. 1~a!.

After performing the rescaling and calculating the grap
corrections, we obtain the following RG flow equations:

dl i j

dl
5~D2212x!l i j 2

1
2 (

k,l
l ikMkll l j , ~5.11a!

dk i j

dl
5~D2412f!k i j , ~5.11b!

dKi j
n

dl
5~D2412x!Ki j

n , ~5.11c!

dKi j
t

dl
5~D2412x t!Ki j

t , ~5.11d!

where, for simplicity, we have set the ultraviolet cutoffL
51. The components of the in-plane bending coefficie
Ki j

n , coupling toun anduL scale withx, whereas the com
ponentsKi j

t coupling tout scale withx t . The matrixMkl has
similar but different forms for the uniaxial andD-axial mod-
els. In theD-axial model,Mkl5dcMkl

k and in the uniaxial
modelMkl5dcMkl

k 1(D22)Mkl
K , where

Mkl
k 5E dVD

~2p!D

q̂k
2q̂l

2

k2~ q̂!
, ~5.12a!
02110
e

p
th

ar

f
f
-
r-

c

t,

Mkl
K 5E dVD

~2p!D

q̂k
2q̂l

2

K2~ q̂!
. ~5.12b!

Note thatMkl , like l i j andAi j defined in Sec. II, is really a
subset of the components constructed from the fourth-r
tensor

Mi jkl
k 5E dVD

~2p!D

q̂i q̂ j q̂kql̂

k2~ q̂!q4
~5.13!

and Mi jkl
K defined in a similar way.Mkl does not transform

like nor have the symmetries of a second-rank tensor.
D-axial and the uniaxial models differ mostly in their respe
tive forms of l i j and Mi j . These different forms require
slightly different fixed-point analysis, and we will now trea
the two cases separately.

Regardless of the model, we can choosef5(42D)/2
and x t5(42D)/2 to keepk i j and Ki j

t fixed. Then,x53
2D and the inverse correlation function for the parts ofu
not in the anisotropy planes~i.e., notut) scales as

Gi j
21~q,l i j ,Ki j !5e(D26)lGi j

21
„elq,l i j ~ l !,Ki j ~ l !…

5e2e ll i j ~ l !qiqj1K~ q̂!q4. ~5.14!

Thus, ifl i j has a nonzero fixed point valuel i j* , then, choos-
ing elq51, we have

l i j ~q!5l i j* qe. ~5.15!

Both k i j andKi j
t remain constant.

C. The uniaxial model

In the uniaxial model, bothl i j Eq. ~2.31! and Mi j are
uniaxial. Mi j is easily calculated by taking the appropria
components of the full fourth-rank tensorMi jkl , Eq. ~5.13!:

Mi j 5M uud i1d j 11
1

~D21!
M uu'@d i1~12d j 1!1~12d i1!d j 1#

1
1

~D21!~D11!
M'~112d i j !~12d i1!~12d j 1!.

~5.16!

The components ofMi j
k andMi j

K of Mi j have simple expres
sions in terms of integrals over angle:

M uu
k5E dVD

~2p!D

cos4u

k2~ q̂!
, ~5.17a!

M uu'
k 5E dVD

~2p!D

cos2u sin2u

k2~ q̂!
, ~5.17b!

M'
k 5E dVD

~2p!D

sin4u

k2~ q̂!
, ~5.17c!
8-11
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whereu is the angleq̂ makes with the uniaxial axis~one-
axis!. A similar set of expressions applies to the compone
of Mi j

K with K(q̂) replacing k(q̂). Note that M23

5M' /@(D21)(D11)# and M125M135M uu' /(D21),
whereas the components of the true second-rank unia
tensorTi j satisfiesT235T125T1350.

With these definitions, the recursion relations for the co
ponents ofl i j become

dl1

dl
5el12 1

2 ~l1
2M uu12l1l2M uu'1l2

2M'!,

~5.18a!

dl2

dl
5el22 1

2 ~l1l2M uu1l2
2M uu'1l1l3M uu'1l2l3M'!,

~5.18b!

dl3

dl
5el32 1

2 ~l3
2M'12l2l3M uu'1l2

2M uu!,

~5.18c!

where l1 , l2, and l3 were defined in Eq.~2.31!. These
equations have an unusual fixed-point structure as show
Fig. 2. In appropriate two-dimensional planes in the thr
dimensional space ofl1 , l2, andl3, they exhibit the famil-
iar four-fixed-point structure of systems with two coupl
potentials in which there is one unstable Gaussian fi
points, one globally stable fixed point, and two fixed poin
that are stable in one direction and unstable in the other.
full three-dimensional structure is topologically equivalent
what would be obtained if the two-dimensional structure
rotated about the axis connecting the Gaussian and glob
stable fixed points and subsequently stretched anisotr
cally. In this process, the two mixed-stability fixed poin
become an elliptical ring with stability exponent of zero f

FIG. 2. Renormalization-group flows for the uniaxial mod
showing the Gaussian~G! and the uniaxial nematic elastomer~NE!
fixed points and the fixed ringR, unstable in one direction an
marginally stable around its perimeter. The locus of flow lines,
which GA and GB are two examples, fromG to R and extended
beyondR form a distorted coneC. All the points within and on the
boundary ofC flow to the stable fixed-point NE. All other point
flow to large coupling.
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displacements along the ring and one positive and one n
tive exponent for displacements perpendicular to the ri
The fixed points and their stability exponentsv1 , v2, and
v3 are given as follows.

~a! Gaussian:

l15l25l350,

v15v25v35e. ~5.19!

~2! Uniaxial nematic elastomer:

l15
2eM'

DM
, l252

2eM uu'

DM
, l35

2eM uu

DM
,

v152e, v252e, v352e, ~5.20!

whereDM5M uuM'2M uu'
2 .

~3! Fixed ring:

l15
2e

M uu12aM uu'1a2M'

,

l25al1 , l35a2l1 ,

v152e, v250, v35e ~5.21!

for 2`<a,`. For every point on the ring,l1l35l2
2. The

fixed ring includes the following various interesting point
~a! a51, l15l25l3, this is the fully isotropic fixed-
connectivity-fluid fixed point of isotropic membranes@6#; ~b!
a521, l152l25l3 ; ~c! a56`, l15l250, l3
52e/M' ; and ~d! a50, l152e/M uu , l25l350.

D. The D-axial model

The analysis of theD-axial model is complicated by the
fact thatl i j has a large number@D(D12)/2510 in D54]
of independent components. To simplify our presentation,
will first consider flows in a restricted subspace in whichl i j
is parametrized by only two parameters. Thus, we will fi
find four fixed points with a particular structure and sho
that one of them is globally stable and describesD-axial
nematic elastomer membrane. We then give a general s
tion for all fixed points and show that it actually contain
both the fixed point, Eq.~5.20!, and the fixed ring we found
for the uniaxial model. Furthermore, we show that if anis
ropy of l i j is turned on in the (D21)-dimensional plane, the
uniaxial fixed point, Eq.~5.20!, becomes unstable and th
system flows to the globally stableD-axial one.

Our recursion relations are still given by Eq.~5.11d! with-
out Ki j . Choosingf to keepk i j constant, we obtain

dl=

dl
5el= 1

2 l= l M= l= , ~5.22!

wherel= and M= are, respectively, matrices with entriesl i j
andMi j . As in the uniaxial case, this equation should ha
an isotropic fixed point will alll i j equal, i.e., withl=;1=
where 1= is the matrix with all entries equal to one. It is als

f

8-12
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clear that this equation has a fixed point withl=;M= 21, pro-
vided the symmetries ofl= and M= are compatible. In the
uniaxial case,M= has more unequal components thanl= , thus
the solutionl=;M= 21 is not permitted there. In theD-axial
case,M= has the same number of independent componen
a D-axial second-rank tensor andl=;M= 21 is permitted. We
thus begin by seeking fixed points in the 2D subspace
fined by

l= 5laM= 211lb1= . ~5.23!

The recursion relations forla andlb are

dla

dl
5ela2

1

2
la

2 , ~5.24a!

dlb

dl
5elb2

1

2
lbS 2la1lb (

i , j 51,

D

Mi j D , ~5.24b!

where we used 1= M= 1=5( i j
DM i j 1= . The fixed points and thei

stability exponents for these equations are given as follo
~1! Gaussian:

la5lb50, ~5.25!

va5vb5e. ~5.26!

~2! Fixed-connectivity fluid:

la50, lb5
2e

(
i j

D

M i j

, ~5.27!

va5e, vb52e. ~5.28!

This fixed point is in fact the isotropic fixed-connectivity
fluid fixed point found in Ref.@6# for isotropic membranes.

~3! Mixed:

la52e, lb52
2e

(
i j

D

M i j

, ~5.29!

va52e, vb5e. ~5.30!

We call this fixed point mixed because its coupling const
matrixl= has components characteristic of both the fixed c
nectivity fluid and theD-axial membrane fixed points.

~4! D-axial nematic elastomer:

la52e, lb50, ~5.31!

va5vb52e. ~5.32!

This fixed point is in fact globally stable, i.e., it is stable
all directions. Pluggingl= 5laM= 21 into the recursion rela-
tion, Eq. ~5.22!, and linearizing, we obtainddl= /dl5
2edl= . Thus, the stability exponent is2e for all directions.
02110
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We have thus identified one globally stable fixed poi
the nematic elastomer fixed point, and two others. The
fixed-point structure of the flow equation, Eq.~5.22!, is ac-
tually not difficult to determine. SinceM= is generically posi-
tive definite, we can define a new~symmetric! coupling con-
stant matrixP= 5M= 1/2l= M= 1/2/(2e), whose flow equation is
given by

d

dl
P= 5P= 2P= 2. ~5.33!

One can immediately see that every projection matrix@36# is
a fixed point forP= and vice versa. This means that the ge
eral solution for the flow equation, Eq.~5.22!, is given by

l= 52eM= 21/2P= M= 21/2, ~5.34!

with P= as an arbitrary projection matrix.
We can classify fixed points, or more generally fixed su

spaces, by the dimensionDP of the space thatP projects
onto. Of course, TrP5DP . If the dimensionD of the elastic
manifold is an integer, thenP can project onto all subspace
with dimensionsDP50,1, . . . ,D. WhenD is not an integer,
the classification is less clear. A convenient set, howeve
the set with dimensionalitiesDP50,1, . . . ,@D#, and DP
5D,D21, . . . ,D2@D#, where @D# is the greatest intege
less than or equal toD. If DP5D, P= D5I= is the unit matrix,
where the superscript indicates the dimension ofP. If DP

51, Pi j
1 5eiej for any unit vectorê. A (D21)-dimensional

operatorPi j
(D21)5d i j 2eiej can also be constructed from th

unit vectorê. Similarly, k- and (D2k)-dimensional projec-
tion operators can be defined viaPi j

k 5( l 51
k eli el j and

Pi j
(D2k)5d i j 2Pi j

k , whereêk•êl5dkl .
To study stability of the flow equation, Eq.~5.33!, for P

for a given fixed-point projection matrixP0
D0, we express

deviations ofP from P0
D0 as

d5P= 2P= 0
D05P= 11P= 21P= 3 , ~5.35!

where

P= 15P= 0
D0dP= P= 0

D0 , ~5.36!

P= 25~ I=2P= 0
D0!dP= ~ I=2P= 0

D0!, ~5.37!

P= 35P= 0
D0dP= ~ I=2P= 0

D0!1~ I=2P= 0
D0!dP= P= 0

D0 . ~5.38!

Recall that P= is a D-dimensional symmetric matrix with
D(D11)/2 independent components.P= 1 is the projection of
dP onto theD0-dimensional subspace defined byP= 0

D0, and it
hasD0(D011)/2 independent components. Similarly,P= 2 is
the projection ofdP= onto theD2D0 dimensional subspac
defined byI=2P= 0

D0 with (D2D0)(D2D011)/2 independent
components. Finally,P= 3 represents theD0(D2D0) compo-
nents ofdP= , which couple the subspaces defined byP= 0

D0 and

I=2P= 0
D0. To linear order, the flow equations fordP are
8-13
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d

d l
P= 152P= 1 , ~5.39!

d

d l
P= 25P= 2 , ~5.40!

d

d l
=P350. ~5.41!

Thus, P= 1 is stable,P= 2 is unstable, andP= 3 is marginally
stable. This means that theD0-dimensional fixed-point pro-
jection matrix is stable with respect to any change inP= in the
D0(D011)/2-dimensional space ofD03D0 matrices that
operate in the space defined byP= 0

D0; it is unstable with re-
spect to any changes in P in the
(D2D0)(D2D011)/2-dimensional space of (D2D0)
3(D2D0) matrices that operate in the space defined bI=
2P= 0

D0; and it is marginally stable with respect to changes
P= in the D0(D2D0)-dimensional space of matrices th
couple P= 0

D0 to d=2P= 0
D0. These results imply that the set o

fixed points defined by allD0-dimensional projections matri
ces is aD0(D2D0)-dimensional surface in the space of a
possible symmetric matricesP or, equivalently, in the spac
of coupling constantsl= . This space is necessarily compa
since the subspaces defined byP= 0

D0 are parametrized by uni
vectors.

There is only one projection operator withD05D. This is
the operatorP= 0

D5I= that projects onto the whole space. F
this case,P= 2 and P= 3 are both zero and the fixed point
stable in all directions. It is the globally stable fixed poi
with l= 52eM= 21, which is identical to the stableD-axial
fixed point of the restricted set of class of couplings defin
by Eq. ~5.23!. The other fixed points for the restricted set
couplings must correspond to someP= 0

D0 with D0,D. It is
straightforward to show that the fixed-connectivity-flu
fixed point corresponds toP0i j

1 5eiej with

ei5

(
k51

D

Mik
1/2

S (
i , j 51

D

Mi j D 1/2, ~5.42!

where Mi j
1/2 is the i j component of the matrixM= 1/2. Thus,

this fixed point is actually a single point in a (D21)5(3
2e)-dimensional fixed manifold. Similarly, the mixed fixe
point corresponds toP0i j

D215d i j 2eiej . There are other un
stable fixed points forl= not described by the restricted s
defined by Eq.~5.23!, in particular, those withD052 or D
22.

We have identified all of the fixed-point manifolds of th
D-dimensional coupling matrixl= . These must include the
fixed points of the uniaxial model discussed in the preced
section. When uniaxial constraints are applied, it is natura
construct unit vectors and projection matrices from the co
ponents ofM= parallel and perpendicular to the anisotro
02110
t

d

g
o
-

axis. It is not difficult to show that the stable uniaxial fixe
point corresponds to a two-dimensional projection opera

P0i j
2 5e1ie1 j1e2ie2 j , ~5.43!

where

e1i5Mi1
1/2/M uu

1/2, ~5.44!

e2i5AM uu

DM
S (

k52

D

Mik
1/22

M uu'

M uu
M1i

1/2D . ~5.45!

Thus, the uniaxial fixed point is a point, satisfying uniax
constraints, in a 2(D22)-dimensional fixed manifold of al
possible couplings. A point on the uniaxial fixed ring para
etrized by a corresponds to a one-dimensional projecti
operatorP= 0

1 defined by the unit vector

ei~a!5

Mi1
1/21a(

k52

D

Mik
1/2

~M uu12aM uu'1a2M'!1/2
. ~5.46!

The set of vectorsê(a) defined by all a define a one-
dimensional loop in a (D21)-dimensional fixed manifold in
the space of all possibleD-dimensional couplings.

VI. DISCUSSION AND CONCLUSION

In this paper we studied thermal fluctuation and nonlin
elasticity of nematically ordered elastomer membranes
their flat phase. For the physical case of two-dimensio
membranes, we found that at harmonic level in-plane pho
correlations are short ranged but the in-plane orientatio
order remains long ranged, in spite of violent thermal flu
tuations. A generalization of a nematic elastomer membr
to an arbitraryD-dimensional membrane with either uniaxi
or D-axial nematic order allowed us to study the effects
out-of-plane undulation and in-plane phonon nonlineariti
We found that undulation nonlinearities are relevant wh
D,4 and dominate over the in-plane nonlinearities that o
become important whenD,3. Focusing on the dominan
undulation nonlinearities~and neglecting in-plane nonlinear
ties!, we performed a RG calculation combined with an e
pansion aboutD54 and found that for 3,D,4 bending
rigidities are only finitely renormalized, while in-plane ela
tic moduli become singular functions of a wave vector~i.e.,
exhibit anomalous elasticity!, vanishing with a universa
power law. This power law is controlled by an infrared stab
fixed point whose stability we analyzed in detail for th
uniaxial andD-axial analytic continuations, finding agree
ment in fixed-point structure. This analysis also allowed us
make contact and recover some of the results previously
tained in the studies of~crystalline! polymerized membranes
In particular, we found that the so-called connected fluid
realized as a fixed point of a nematically ordered elastom
membrane that is unstable to the globally stable nematice
tomer fixed point.
8-14
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Despite some of the success in understanding the beha
of nematic elastomer membranes, there are obvious lim
tions of our analysis, most notably in the application of o
work to the physical case ofD52 elastomer membranes
This shortcoming primarily has to do with the neglect
in-plane elastic nonlinearities, which near the Gaussian fi
point become relevant forD,3. While it is very likely that
the subdominance of these in-plane nonlinearities relativ
the undulation ones will persist some amountbelow D53
@37#, we expect that in the physical case ofD52, all the
three nonlinearities need to be treated on equal footing.

FIG. 3. A possible phase diagram for ideal nematic elasto
membranes. As the temperature is lowered a crumpled memb
undergoes a transition to isotropic flat phase atTCF , followed by a
2D in-plane isotropic-nematic-like transition to an anisotropic~ne-
matic! flat phase. AsT is lowered further, this anisotropic flat phas
becomes unstable to a nematic tubule phase, where it continuo
crumples in one direction but remains extended in the other. At e
lower temperature, a tubule-flat transition takes place atTTF .
02110
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ing this remains an open and challenging problem.
We conclude with a discussion of the global conform

tional phase behavior of nematic elastomer membranes
with ordinary polymerized membranes we expect, up
cooling, isotropic elastomer membranes to undergo a cr
pling ~flattening! transition from the crumpled to the flat
isotropic phase. Upon further cooling, an in-plane~flat! iso-
tropic to~flat! nematic transition can take place. As shown
Toner and one of us@23#, polymerized membranes, with a
arbitrary small amount of in-plane anisotropy, inevitably e
hibit the so-called tubule phase whose properties and lo
tion in the phase diagram are intermediate between the h
temperature crumpled and low-temperature flat phases. T
we expect that for nematically ordered elastomer membra
there is a similar nematically ordered tubule phase. Sinc
such a state the in-plane rotation symmetry is spontaneo
~as opposed to explicitly! broken, we expect qualitatively
distinct in-plane elasticity distinguished by the presence o
new in-plane soft phonon mode. Consequently, a nem
tubule should be a qualitatively distinct phase of elas
membranes. This discussion is summarized by a poss
schematic phase diagram for a nematic elastomer membr
illustrated in Fig. 3. Also shown in this figure is a possibili
of the nematic-flat to nematic-tubule to nematic-flat reentr
phase transitions as a result of competition between gro
of nematic order~anisotropy! and suppression of mem
brane’s out-of-plane undulations upon cooling. A detail
analysis of the nematic-tubule phase and these phase tr
tions will be discussed in a separate publication@28#.
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APPENDIX: SCALING OF HARMONIC FLUCTUATIONS
AT TWO DIMENSIONS

In this appendix, we show a detailed calculation to just
the approximate form of harmonic phonon propagators
two dimensions, as presented in Eq.~4.12!.

The propagatorsGi j
0 (q) are easily found through equipa

tition or by a Gaussian integration:

Gxx
0 ~q!5

1

lxqx
21Kxqy

4
F0S axqy

2

qx
,
ayqx

2

qy
D ,

Gyy
0 ~q!5

1

lyqy
21Kyqx

4
F0S axqy

2

qx
,
ayqx

2

qy
D ,

r
ne

sly
n
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Gxy
0 ~q!52

lxyf0S axqy
2

qx
Df0S ayqx

2

qy
D

lxlyqxqy
F0S axqy

2

qx
,
ayqx

2

qy
D ,

5

2lxyqxqyF0S axqy
2

qx
,
ayqx

2

qy
D

~lxqx
21Kxqy

4!~lyqy
21Kyqx

4!
, ~A1!

with anisotropy lengthsax anday defined as

ax5~Kx /lx!
1/2, ~A2a!

ay5~Ky /ly!1/2. ~A2b!

Because of the anisotropy of the nematic state the prop
tors are highly nontrivial even at the harmonic level. Th
angular dependence is encoded by the crossover functio

f0~z!5
1

11z2
, ~A3a!

F0~z,w!5
1

12r2f0~z!f0~w!
, ~A3b!

illustrated in Fig. 4 and with asymptotics of the doubl
crossover functionF0(z,w) given by

FIG. 4. A polar plot of the crossover functio
F0(axqy

2/qx ,ayqx
2/qy), with q5Aqx

21qy
2 fixed. Shaded are the

‘‘decoupled regions’’ whereuqxu!axqy
2 or uqyu!ayqx

2 . While F0 is
positive and finite for allq, in the limit q→0 it exhibits cusps at
un5arctan(qy /qx)5np/2 (n50,1,2,3).
02110
a-
r
s

F0~z,w!.H 1

12r2
if z→0 and w→0

1, if z→` or w→`,

~A4!

with the ratio

r25
lxy

2

lxly
, ~A5!

required by stability to be less than 1.
As can be seen from the asymptotic form given in E

~A4!, the scaling functionF0(axqy
2/qx ,ayqx

2/qy) is finite for
all q and therefore simply provides an angular modulation
the phonon correlation functionsGi j

0 (q). Its value ranges
between the ‘‘decoupled’’ and ‘‘coupled’’ values of 1 an
1/(12r2), with the decoupled regime defined by a union
uqyu!ayqx

2 anduqxu!axqy
2 regions inq. The coupled regime

is the complement of the decoupled regimeaxqy
2!uqxu

!ay
21/2uqyu1/2, as illustrated in Fig. 4. As a result, sel

correlation~diagonal! functionsGxx
0 (q) and Gyy

0 (q) are es-
sentially those of two independent 2D smectics withx2 and
y-directed layer normals and corresponding phononsux and
uy , respectively. The only effect of the cross couplinglxy on
these phonon self-correlation functions is tofinitely enhance
their amplitude in the coupled regime, without modifyin
their long-wavelength pole structure. Thus, in order to stu
the fluctuation ofux field, we only have to concentrate on th
wave-vector region qx

2;ax
2qy

4 . For qx
2!ax

2qy
4 ,

F0(axqy
2/qx ,ayqx

2/qy)'1 and Gx
0(q)'1/Kxqy

4 , while for
uqyu@qx

2@ax
2qy

4 , F0(axqy
2/qx ,ayqx

2/qy)'1/(12r2) and
Gx

0(q)'1/Lx8qx
2 . This is exactly the same as the asympto

behaviors of Eq.~4.12a!. Thus, we see that Eq.~4.12a! is a
good approximation forGx

0 in the wave-vector regionqx
2

;ax
2qy

4 . Of course, forqx
4@qy

2 the ratio between Eq.~4.12a!
and Gx

0 is approximately 1/(12r2), but this region is not
important for fluctuation ofux phonon anyway. This analysi
also applies toGy

0 if we exchange labelsx with y in every
place. Thus, Eq.~4.12b! is also a good approximation fo
Gy

0 .
In contrast, the phonon cross-correlation~off-diagonal!

function Gxy
0 (q) depends strongly on whetherq is in the

decoupled~union of uqyu!ayqx
2 and uqxu!axqy

2 regions! or
coupled (axqy

2!uqxu!uqy /ayu1/2) regimes. At long scales
near the two dominantx and y smectic regions ofq, it is
strongly subdominant to the self-correlation functio
Gxx

0 (q) andGyy
0 (q), down by a factor ofqy andqx , respec-

tively.
The subdominance of the cross correlations relative to

self-correlations can also be seen by analyzing the beha
of the cross-correlation ratio ofux anduy :

rxy~q!5
Gxy

0 ~q!

AGxx
0 ~q!Gyy

0 ~q!
. ~A6!

A simple analysis shows that in the decoupled regime
8-16
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rxy~q!.5 r
uqxu

axqy
2

!r for uqxu!axqy
2

r
uqyu

ayqx
2

!r for uqyu!ayqx
2 ,

~A7!

suggesting that thermal fluctuations ofux anduy are nearly
independent. On the other hand, in the coupled regime
h

.

tt.

X

J.
.
.

02110
rxy~q!.r, for axqy
2!uqxu!uqy /ayu1/2, ~A8!

ux anduy are strongly correlated. In this region, we have

Gxy
0 '

lxy

lxlyqxqy
. ~A9!
an-

i-

tt.
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