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Fluctuating nematic elastomer membranes
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We study the flat phase of nematic elastomer membranes with rotational symmetry spontaneously broken by
an in-plane nematic order. Such a state is characterized by a vanishing elastic modulus for simple shear and soft
transverse phonons. At harmonic level, the in-plane orientatigreahatig order is stable to thermal fluctua-
tions that lead to short-range in-plane translatiofmdonon correlations. To treat thermal fluctuations and
relevant elastic nonlinearities, we introduce two generalizations of two-dimensional membranes in a three-
dimensional space to arbitra)-dimensional membranes embedded id-dimensional space and analyze
their anomalous elasticities in an expansion alidut4. We find a stable fixed point that controls long-scale
properties of nematic elastomer membranes. It is characterized by singular in-plane elastic moduli that vanish
as a power lawy, =4—D of a relevant inverse length scale.g., wave vectgrand a finite bending rigidity.

Our predictions are asymptotically exact near four dimensions.
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I. INTRODUCTION ity, thereby stabilizing the orientational order against these

very fluctuations. This novel “order from disorder” phenom-

The ubiquity and importance of membrane realizations irehon and the universal “anomalous elasticity,” namely,
nature, such as cellular walls, and in laboratories, such @§hgth-scale dependent elastic moduli, non-Hookean stress-
self-assembled bilayers of lipid amphiphils, have stimulatetf@in relation, and a universal negative Poisson ratio

considerable scientific activitigd]. These nearly tensionless 5.6,11,12, are now known to be quite commonly exhibited

- ) . . . : by many other “soft” systems subjected to fluctuations.
[2] lipid sheets are highly erX|b_Ie with elastic moduli often In this paper we introduce and explore a universality class
comparable to thermal energies. Consequently,

_ ! _ on long¢ solid membranes, whichspontaneouslydevelop anin-
length scales, their conformational properties are strongly afp|aneorientational nematic order. Our motivation is twofold.

fected by thermal fluctuations. This, together with early sucirst, our interest is driven by experimental progress in the
cesses in understanding a variety of puzzling phenomengynthesis of nematic liquid-crystal elastomgt$], statisti-
(such as red blood cells flickg¢B], biconcave shape of eu- cally isotropic and homogeneous gels of crosslinked poly-
rythrocites[4], and period of lyotropigsin terms of con- mers(rubbe), with main- or side-chain mesogens, that can
tinuum models of fluctuating elastic sheets, has attracted thgpontaneously develop a nematic orientational order. Even in
attention of the physics community. Consequently, signifi-the absence of fluctuations, they were predicted] and

cant progress has been made in understanding the statistiﬁ ejr &ZS(:ZESSJ&%I?i:fplg‘yv?hr;cir:?;h(g \tzi(i:;?]?rtlm%fp:t?:gsn}g?a
mechanics of fluctuating membranédg. ' 9 9

It is by now well appreciated that the nature of a mem-& ange of strain, applied transversely to the nematic direc-

b 'S in-pl d ith threh ; di ; tion. This striking softness is generic, stemming from the
rane’s in-plane order, with thréberetofore studieduniver-  gh5ntaneous orientational symmetry breaking by the nematic

sality classes, the isotropic, hexatic, and sdiid., tethered state[ 14,16] that ensures the presence of a zero-energy Gold-
or polymerized, crucially affects its conformational proper- stone mode, corresponding to the obseri&d] soft distor-
ties. The most striking effect of in-plane orders is the stabition and strain-induced director reorientation. The hidden ro-
lization in solid membranes of a “flat” phasgb], with a tational symmetry also guarantees the vanishing of one of the
long-range orientational order in the local membrane norfive elastic constantsl6] that usually characterize harmonic
mals[6], that is favored at low temperature over the entropi-deformations of a three-dimensional uniaxial solitig].
cally preferred high-temperature crumpled state. ThereforéeThermal fluctuations lead to Grinstein-Pelcovits-liki9]
in marked contrast to liquid membranes and one-dimensionaknormalization of elastic constanfd4] in bulk systems
polymer analogs, which are always crumpléeéyond a per- with dimensions below three in pure systef®9,21 and
sistence length[7], tethered membranes, despite being twobelow five when effects of the random network heterogeneity
dimensional[8] are predicted5] to undergo a thermody- are taken into accouh®2]. It is, therefore, likely, and indeed
namically sharp crumpled-to-flat phase transitieri0]. The  we find that the elastic properties of a two-dimensional fluc-
ordering is made possible by a subtle interplay of thermatuating tensionless sheet of such a nematic elastomer differ
fluctuations with nonlinear membrane elasticity, which atqualitativelyfrom those of the previously studied crystalline
long scales infinitely enhances a membrane’s bending rigidmembraneq1]. Our aim here is to explore the effects of
thermal fluctuations on this universality class of solid mem-

branes.
*Present address: NEC Laboratories America, Inc., 4 Indepen- Our other motivation for exploring the physics of nematic
dence Way, Princeton, NJ 08540, USA. elastomer membranes comes from an earlier discovery by
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Toner and one of u§23] that any amount of any kind of stroy the long-range in-plane nematic order in spite of en-
in-plane anisotropy, a seemingly innocuous generalizationhanced fluctuations relative to an isotropic system arising
significantly enriches the phase diagram of polymerizedrom the soft Goldstone mode. In Sec. V, we consider the
membranes. Most dramatically, it was predicféd] that an  effects of anharmonicities and develop&n (4—D) expan-
entire new phase of membranes, called the “tubyl24]  sion about the upper critical dimensién =4 for two model
phase, always intervenes between the high-temperatuystems that have well-defined analytic continuation®to
crumpled and low-temperature flat phases. The defining=2- In both models, we find similar flow equation for cou-
property of the tubule phase is that it is crumpled in one ofling constants and an infrared-stable fixed point in which
the two membrane directions but flate., extendedin the the bending modulug is unrenmormalized and the in-plane
other, with its thickness, roughness, and anomalous elastici§lastic modulik;; vanishes with wave numberasq*.
displaying universal behaviors controlled by a nontrivial, in-

frared stable fixed poinf23]. The tubule phase has since Il. MODELS

been observed in Monte Carlo simulatidr?y] of non-self- _

avoiding(i.e., phantomanisotropic membranes with proper- A. Notation: Reference and target spaces

ties (the thickness, roughness, and Poisson ratioclose Although physical membranes are two-dimensional mani-
qualitative and quantitative accord with the predictions offolds in a three-dimensional space, it is often useful to con-
Radzihovsky and Ton€23]. sider generalizations tB-dimensional manifolds embedded

Although it was arexplicit rotational symmetry breaking in a d-dimensional space witd>D. Our interest is in solid
(anisotropy that was considered by the authors of R&8],  membranes, which, unlike fluid membranes, have a nonvan-
we expect a similar, but qualitatively distinct tubule phase toishing shear modulus at least in their isotropic state.
be also displayed by the spontaneously anisotropic elastomer To describe the geometry and fluctuations of these mem-
membranes considered in this paper. However, we leave thgranes, we need to introduce a certain amount of notation.
subject of the global phase diagram, the elastomer tubulgirst, we define the reference spa&@. This is the
phase, and the phase transitions between it and the flat amldimensional space occupied by the membrane in its qui-
crumpled phases for a future publicatif28]. Here, we in-  escent flat reference state. We dendtdimensional vectors
stead focus on the formulation of models of nematically or-in this space in bold and their components with roman sub-

dered elastomer membranes and the study of long-lengtiscriptsi,j=1, ... D . In particular, we denote intrinsic co-
scale properties of its flat phase. ordinates on the membrane by the vector

Past extensive investigations, both in the context of de-
fected crystalline membrang29,3( and liquid crystals con- r=(Xy,...Xp) (2.1

fined in rigid gels(e.g., aerogels and aero$i[81], demon-

strated that arbitrarily weak heterogeneity qualitativelywith components;. The positions index mass points in a
modifies the long-scale nature of liquid-crystal orders, memiagrangian description of the membrane. The membrane
branes morphologies, and elasticities. We, therefore, expeéitictuates in ad-dimensional target spacg8;. We denote
that the local heterogeneity in an elastomer network will alsovectors in the embedding space with overarrows and compo-
become qualitatively important on sufficiently long scalesnents of these vectors with greek subscripty=1, ... d.

and will likely dominate over the thermal fluctuation effects In particular, we describe the position$s of the mass point
that are the subject of this paper. However, here we considésbeled byr with the embedding vector

the idealized limit of elastomer membranes in which the ef-

fective quenc_hed disorder is sufficiently weak such that its R(r)=[Ry(r), . .. Ry(r)] (2.2
effects are unimportant on scales shorter than some very long

disorder-determined length scales. We leave the study %ith componentsR ,(r).

these heterogeneity effects for a future investigaf®®]. The reference spac® is identified as a subspace 8§ .

This paper is organ'lzed as follows. In'Sec. I, we deVeIOpThe use of orthonormal basis vectors will simplify some of
two models for aD-dimensional nematically ordered flat di . d introduck ~ ith
phase of elastomer membranes fluctuatingiidimensions ~ OUr discussion, and we introducevectorse, in Sy wit

with d>D, one with uniaxial nematic order and the other cOmponent,,=é,,, satisfying
with D-axial nematic order. They are referred to as the

uniaxial model and thé-axial model, respectively, in this é#.évz Suv-
paper. For the physical case of interBst 2, they reduce to

S o e 1 hee Ve For iR, wher e sun-

’ ' . NS Mhation convention on repeated indices is understood. We
D=3 have parts that are equivalent to those of smectic lig- ~ -~
uid crystal, a columnar liquid crystal, and a crystalline solid.cN00se the se{e,} so that the subset of vectors, i
In Sec. IV, we investigate the mean-field theory and har-— 1: - - - P lie in Sg, which we represent as a subspace of
monic fluctuations in physically realizable two-dimensional ST+ Thus,
membranes embedded in a three-dimensional space. We find o

that harmonic fluctuations in these membranes do not de- €€ =0j, (2.4

(2.3
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2 acs 1 if i=u<D )
€ €=%=\g if u=p+1, .. d 2D
We choose length scales such that the positioBirof the
point r in the reference membrane is

Iir(—:‘f: Xiéi ) (2.6
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1 o 1[dR 4R 1
Uij=5(9;=9ij)=53 o ax o =5 (T,
+a,u-du+aih-a;h). (2.13

B. The model Hamiltonian

As discussed in the Introduction, internally isotropic solid
membranes have been extensively studiddIn contrast to

describing a perfectly flat membrane configuration. Positionﬁquid membranes and one-dimensional polymer analogs
R(r) of the distorted membrane can be described by ahey admit a flat phase, characterized by an infinite orienta-

D-dimensional in-plane phonon fieldu(r) and a
d— D=d.-dimensional out-of-plane undulatigheigh) field
ﬁ(r):

D de
F?(r>=i§l [xi+ui(r>]éi+k2 he(F)eip -

=1

(2.7

tional (in embedding spageersistence length that is stable
to thermal fluctuations. The long-wavelength free-energy
density for distortions of such spontaneously flat phase is
given by

Local distortions of the membrane can be expressed in

terms of thed X D-dimensional deformation tensay [33]
with components

aRM —
In the flat reference state,
JR
f ref,u
:f‘_—axi =0, - (2.9

F1= Foendt Fstretchs (2.19
where
K 2R\ 2
fbendZE(V h) (2.15
and
A 2 2
]:stretchZE(Tn:J) + wu(Tru?) (2.163
B ~
=5 (Tru)*+ u(Try?), (2.16D

wherex is the membrane’s bending rigidif2], A andu are

Under independent rotations in the target and referencge | anecoefficients characterizing the in-plane elasticity,

spacesA ,; transforms as
A= 01 Orji, (2.10

where O, is adXd rotation matrix inSy and Ogj; is a
D X D rotation matrix inSg.

B=\A+2u/D is the bulk elastic modulus, and
~ 1
Uij:Uij_E(Trlél)ﬁij (217)

is the symmetric-traceless part of the strain tensor with Tr

SinceR is a Euclidean vector, the metric tensor, which=0. Earlier studies of non-liquid-crystalline polymerized

measures distances between neighboring points &
=g;;dxdx;, for a membrane is

_R(r) IR(r)
W= T

(2.1

In the reference flat phase;; =gi'= A'SAS =5, . We

membrane$5,6,12 have demonstrated that thermal fluctua-
tions produce wild undulations about the flat stﬁ;@, that

make elastic nonlinearities in the height figid(but not in
the in-plane phonon fields) in u;; , Eq.(2.13, important on
long length scales and lead to universal length-scale-
dependent elastic modulix(q)~q~7«, x(q)~q”+, and
m(q)~q”=. One of the most important consequences of this

will denote tensors S with a double underscore. Thus, the is that the thermally driven upward renormalization of the

metric tensor ig). The Lagrangian strain tensor with com-
= ref g

ponentsu;; =g;; — g, measures the local change in separa
tions of nearby points in distorted states characterized b

F3( r) relative to those of the undistorted, flat state charactergg

ized by R,

dRz_deefZZUijdXide . (212

bending rigidity « stabilizes the low-temperature flat phase

of two-dimensional8] membranes against these very same
yuctuations[S,G,lz.

The free-energy density of E@2.14) provides a correct
scription of elastic and height fluctuations of a membrane
as long as the equilibrium phase is truly an isotropic flat
phase. If, however, the shear modulus becomes suffi-
ciently small, the membrane becomes unstable to spontane-
ous in-plane distortions that break rotational symmetrgof

Using Eq.(2.7), the strain can be expressed in terms of the[14,16,28. In the presence of such instability the distortion

phonon and height fields as

is stabilized by a nonlinear strain energy;, and an in-plane
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curvature energy.,, neglected inF,, Egs.(2.14—(2.16). The opposite limit of the uniaxial anisotropic state is the
The in-plane curvature energy, which stabilizes the systerﬁ{” Dtaxial_ state in which the_re is unequal stretching inCall
against spatially nonuniform distortions is simply directions in the plane. In this case,
Feun=3K(V?u)2. (2.18 0
Aﬂ :kzl AOkekiekj (224)

The important low-order contributions to nonlinear strain en-

ergy are with all A, different.

£ = BTrUTr2— CTr(TN 3+ v Truu?)2. 21 As discussed in dtetail in Ref16], the spontanepus bro-
L= ATIUTTY (W™ ¥(Truw) 219 ken symmetry described by the above deformation tensors
Terms of ordeu® or higher and terms proportional to @ leads to the vanishing of certain shear moduli of the distorted
and (T|u)2TrT12= could also be added but are qualit:';ttively solid. Distortions relative to the new anisotropic state are
innessential for our present discussion. measured by the displacement and height vectd(s, ) and

h(r'), defined via
C. Spontaneously anisotropic phases N . N
o . R'(r'")=r"+u’(r")+h(r")=R(r), (2.25
When u becomes sufficiently small in the presence of
FnL. @ membrane will undergo a transitiph4,16,28 to a

where by definitiorr’ —Ro, u’(r') is theD-dimensional in-
new anisotropic, spontaneously stretched equilibrium stateI displ N ¢ the d.-di |
with a nonvanishing equilibrium straing, an anisotropic plane displacement vector, aififr) is the c-dimensional

deformation tensoAO that differs fromAref 8,;, and po- (d.=D —d) height variable orthogonal t0’. The strain ten-

sor relative to the new state,
sition vectorsR, ,= A iXi . The most general form Q/&O
can be obtained via target and reference-space rotatlons, Eq. 1/JR. IR
(2.10, of the deformation tensor: ui’j =§( ] )

ax ax| (.29
i j
Aj if p=i=1,...D , _ _ o
Aﬁj = ) (2.20 expressed in terms of the strain tengaelative to the origi-
0 if p=D+1,...4d nal state is

resulting from a distortion without rotation in th®; sub-
space ofS;. Here AO are the components of the <D
matrix A°, restricted to the plane of the original referencehe strain Hamiltonian density to harmonic order for the
spaceSR The new equmbnumAAO yields a new metric | niaxial case

tensorgIJ AO AO and a nonvanishing equilibrium strain
relative to the orlglnal isotropic flat membrane:

U=Uo+Aou’Ao. (2.27)

gtTaln 12 )\unl |’| “+,ul u_ IrJt, (2-28
=—(A° ASi=5). (2.2 . o _ :
where the Einstein convention is not used in the first term on

. . . . .. the right hand sidébut is in the seco
The simplest anisotropic state that can form is the un|aX|a} '9 idebut is | nd

one in which the original isotropic membrane is stretched 5kUk|5| (2.29
(compressedalong a single direction iz and compressed I
(stretchedl along the others. Because the reference state is ST =
isotropic, the direction of stretching, specified by a unit vec- Y
tor n® with componentmio, is arbitrary in the plan€g, and 54

we could take it without loss of generality to be along one of

the basis vectors, sag,. The vectorn® also exists in the N"=N161161 N g(1— 811) (1= ;1) + N[ 6i1(1— 8j1)
target spacesy. It has componentsﬁ that are equal tcm?

§ij_n0inoj , (23@

foru=i=1,... D and zero foru>D. Thus, in the uniaxial +6(1=-din)], (2.31
case, where the values aof;, \,, and\; depend on the potentials
=(Ag|— Aoy )NoiNgj+ A, 8 - (2.22 of the original Hamiltonian and o. This form makes it clear
: . that\; is actually a subset of a fourth-rank tensor and not a
Under rotations irS; and Sk, this becomes true second-rank tensor. The bending and curvature energies

become anisotropic with
TAR AT AR
ALi=(Ag = Ao )N, N+ Ag €, -6, (2.23 . S
Foend™ EKijai, h'aj, h, (2.32
A T_ AT
where Awe tjseCBij —Aeyie,,j and wheren = Or,,Ng,, €,, . Sy
:OTMievi! e?izoi'?evj' andniR:Oﬁnoj . fcurv K (9 u (9 u (233)
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where the anisotropic bending and curvature moduli can bdiscussions in Sec. V on the important effects of nonlineari-
expressed, respectively, ag;= KA}]”', and K;; —KAH”', ties in the presence of fluctuations. To simplify the notation,
where in this section we will drop primes appearing in the strain
_ and phonon fields;; andu’ measured relative to the nem-
A= Agy 8181+ AG, (1= 81) (1= 8j1) + AfAG, [84(1 atic state and denote them by andu, not to be confused

with physically distinct unprimed quantities of the precedin
=8+ 62(1- 8], (2:34 oo primed preceding

section.
In the full D-axial case, there is no residual plane that can 1h€ harmonic Hamiltonians for the uniaxial aBdaxial
support shears, and the harmonic free-energy density g&nodels have a longitudinal-strain and height elastic parts de-
pends only on the diagonal parts of the strain:

scribing the cost of simple shear modes:

1( d°q
Etr:)l(r:al_lz )\IJ i “, (2.33 HE: 2 [)\|]q|qj+5le(q)q ]U uJ
2mP|if
with Aj; being a symmetric matrix with ald (D +1)/2 inde- . d
pendent entries different. Again, the Einstein convention is +(0)q ;ﬂ hih; |, (3.9
suspended in this equation. The bend and curvature energies !
have the same form as Ed2.33, but Ai™ is replaced by
1 where
AT = AGAS . (2.36
K@=;Kﬁﬁﬁ (3.2

We note that in the most general case that is compatible with

the D-axial symmetry, alD(D +1)/2 components oAD"

are independent of each other. . o
The total Hamiltonian density for a nematic elastomeric k(@)= x;;07qf, (3.3

membrane is !

F= Fstraint Foend™ Feurv- (2.37%  with g;=q;/q. In uniaxial systems, there is in addition a
shear part in thel — 1)-dimensional plane perpendicular to
We have expressefs;, only to harmonic order in the non- the unique directiomy:
linear strainu;; even though nonlinear terms in the original
isotropic energy are essential to stabilize the system after the _—
Hy /'LJ_f

d”q
nematic order develod46]. As we shall see in Sec. V, near d xu,lJ uj; — sz W[qlu u;
four dimensions, anharmonic terms in the nonlinear strains 7
associated with in-plane phonons are subdomirjanel- +qhq“uﬁu*], (3.4)

evant in the renormalization-groufRG) sensg to nonlin-

earities in the height undulatiorsand we will ignore them  whereu' is the part of the vectau in the plane perpendicu-
in what follows. This is in strong contrast to bulk nematic |ar to n,. u" hasD—1 components Thus iB=2, u* has

elastomers, where such phonon nonlinearities cannot be igmnly one component say,, u and the two models
nored and must be treated nonperturbati@g,21]. are equivalent.

In two dimensions, which we consider in more detail in | poth models, at harmonic level, height and phonon
the Sec. IV, there is only one direction, say $helirection,  yariables decouple and the height correlation function is sim-
perpendicular to the direction of order, an<rl|i’jl ply
=5iy5jyu)’,y. Thus, the second term in E§2.28 can be
absorbed into the first term, which depends only on diagonal
components ofy;; . Thus, in two-dimensiona2D), the free Ghp = 55
energy density has the same form as £935, and is most H
naturally analytically continued fror-axial generalization
of a nematic elastomer membrane. where&ﬁ is the projection operator onto tlk-dimensional

subspace perpendicular to the reference membrane.

'l Uyy

—, (3.5
x(q)q*

IIl. HARMONIC THEORY

The two(uniaxial andD-axial) nematic membrane Hamil- A. Uniaxial case

tonians introduced in the preceding section have complicated In the uniaxial casey can be decomposed into compo-
anisotropies, associated with spontaneous in-plane nematients along the uniaxial direction, and along directions
order, that lead to the membrane’s highly anisotropic conforparallel and transverse to the wave veagr in the plane
mational correlations. In this section, we will investigate perpendicular ta:

fluctuations in the harmonic approximation to these models. .

These harmonic results will be necessary in our subsequent Ui =UpNg+ U g i+ Uy, (3.6

021108-5
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whereng-u;=0 andq, -u;=0. We will represent this de-
composition asu;=(u,,U;,U;). The u-correlation function
can then be decomposed as

Gjj :Gnnn0in0j+GLLaLiaLj +GnL(n0iEhj +n01'(hi)
+Gy( 8]~ 104 ) (3.7

The transverse part ¢&;; decouples from the others and is
easily calculated as

1

G

5 (3.9
Mgy

The Hamiltonian for thes,, andu, components can be writ-
ten as

10 d°q~ -
:E WuaGab Uy, (39)
whereu= (u,,u,) and
L ( MO HK@at N 510
Ngjar Nt K@t

where A3=N\3+u, with A; defined in Eq.(2.3D. In the
long-wavelength limit, terms of ordeyt and gfig can be
neglected relative tqﬁ, and thenn entry inG ™! is effec-
tively \;qf+K, g}, which is the inverse of the propagator
for fluctuations in a smectic liquid crystal. Similarly, in the
long-wavelength limit, theLL part of G ! is effectively

qu+ KHqﬁ, which is the inverse propagator for one com-

PHYSICAL REVIEW E 68, 021108 (2003

where N, =Ax/Ng=A1—\%/\3, K, =L(Ag,)* Similarly,
G, . is dominated b)qlmqﬁ at smallg and

Maf+K(@qg
B A

. (314

. N3a? +K i
wherehg=Ay/\q, KH:K(AOH)4-

Thus we find that, within the harmonic approximation, the
translational lower critical dimension is determined by the
dominant smecticlike fluctuations of, modes and is equal
to D=3. The subdominant columnarlike modes become
important only belowD =5/2, while the transverse fluctua-
tions u; only grow with length scale fob<2.

B. D-axial systems

In D-axial systems, the strain energy is given by Eg.
(2.395 with D(D+1)/2 independent components fag; .
The harmonic Hamiltonian is then given by E§.1) with no
transverse contributions. The height fluctuations are the same
as in the uniaxial case with the appropriate expression for

«(q). The inverse phonon propagator is

Nai+K(g)g* A1pQ10p

G l=

Np03+K(a)g*
(3.15

G can be obtained by inverting ! using minors:G;; =
(—1)"TAI/A, whereA=detG™* andA'l is the determi-
nant of the minor ofG~! obtained by deleting row and
columnj. The results for the long-wavelength diagonal and
off-diagonal components d&;; are, respectively,

A1pd10p

ponent of displacement fluctuations in a columnar liquid

crystal. Thus, whem,=0, G~ decomposes into two inde-

pendent parts, one of which is identical to the inverse propa-
gator of a smectic liquid crystal and the other of which is

identical to one component of the propagator of a columnar

liquid crystal. We will find below that this property survives
the turning on of\, though with different coefficients.
Equation(3.10 is easily inverted to yield

1 hsaltK@at N -
Al e agf+k@gt)
where
A=detG1=Amiq|2+(>\1q|2+f3qi)K(&)q4+~-(-, )
3.1

with A;:M@—xg. It is can be showrisee the Appendix
for discussion in two dimensiohshat G,,,, is dominated at
smallq by the region withg,~q? so that

1

gl +K(9)g”
AiQﬁ"’ Koay

nn— A

, (313

1
Gi~ ——5———. (3.168
LMl HK(@)g?
—1)itiAlig.q.
ij~ 2 2( ‘) 4ii(illqz‘J g2y’ (3.16b
A\gigi+K(a)g*(Aya; +AYd)

where, as beforeA, is the determinant o, A} is the

determinant of theij minor of A, and \/,=detA, /A} .
Thus, the diagonal componen®; have the structure of a

smectic propagator, with all terms involvirg in K((i)q4
subdominant in the long-wavelength limit.

IV. TWO-DIMENSIONAL MEMBRANES

As discussed in the Introduction, real membranes are two-
dimensional manifolds, with reference-space coordinates
=(X1,Xy), fluctuating in a three-dimensional space with co-

ordinatesR= (R;,R,,R3). Because of their low dimension-
ality, these membranes have a number of special properties,
some of which we will investigate in this section. In particu-
lar, we will study the transition from an isotropic to a nem-
atically ordered membrane, which, because of the absence of
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a third-order invariant for two-dimensional symmetric- 1 Aéx—l 0
traceless tensors is of second order in mean-field theory. Our Uo=75 2 , (4.39
treatment will review in a two-dimensional context the 0 Agy—1

mechanism for the emergence of soft elasticity in the nem-
atic phase. We will also consider harmonic fluctuations about ~ 1 A2 )( 10 ) (4.30)
the flat nematic state in some detail and show that they lead = 0 '
to short-ranged positional correlations, but allow for a stable
long-range orientationalnematig in-plane order of the From this and
membrane. 1
Uo=> (Trup)l +Uo (4.49
A. The two-dimensional Hamiltonian =2 TR S

Ou_r star'ging point is the elastic energy of an isotropic_ 1 1 /1 0
two-dimensional membrane augmented by nonlinear elastic =—(TrL_JO)I_+—\/2Tn_J§< )
terms necessary to stabilize the nematic state that develops 20 =702 0 -1

when the shear modulus becomes negative. A simplifying (4.4b
feature special to two dimensions is that the strain teassr  \va optain
a 2X 2 matrix with no independent cubic invariant. The cor-
responding Hamiltonian is A0x:(1+T@o+ /ZT“:JS)UZ' (4.5)
Ko Koo B 2 ~2 ~2 ~ =
F=5 (V)™ S (VAU T+ 5 (Tru) "+ uTru™+ BTruTry Agy=(1+Trup— V2Tru§)*?, (4.6)
+y(Tru?)2 (4139  where Ty, and T3 are given in Eq(4.2).
B We can now write the free energ¥, Eq. (4.1), into a
2 2 more convenient form
< vrmzs K vzgs B B _B ’
2(V h)~+ 2(V u) +2 Tru+ BTrL=J +|y B

K B ~
F= %(Vzh)2+ E(Vzu)2+ E(TI’I.:J—TrléIO)Z-l- y(Tru?

2 \?
x(TrT_JZJr“Z—) . (4.1b
T y=p(2B)

To simplify our discussion, we have left out the cubic andwhich makes it transparent thatis minimized byu=u, and
quartic terms, (Tw)3, (Tru)* and (Tw)?(Tru?), as well as  that permits a straightforward expansion about the ground
higher-order nonlinearities iru. The inclusion of these state.
terms, which are quantitatively smaller than the terms we Using Eq.(2.27), we can now easily express the free-
have in the nearly incompressibiarge B) limit, will not ~ energy density of Eq(4.7) in terms of the strain’ relative
qualitatively modify our results. to the new stretched equilibrium state. First, we observe
The nonlinear strain tensauﬂ, Eq. (2.21), associated
with the spontaneous deformation in the nematic state can
easily be found by minimizing the effective energy, E§1).

Since T@S is greater than or equal to zero, its valuéjgrat

—Tru3)?+ B(Tru—Trug) (Tru?—Truj), 4.7

Tru—Tru0=TrA%u’, (4.89

TR~ TrG3=2Tr(UoA3u") + Tr(AZu")?— 1 (Tradu’)?

equilibrium is zero a~szlong gs>0. In this case, Ty IS- also ~ %(Aéx—Aéy)(Aéxu;x— Aéyu;y). (4.8b
zero. Whenu<0, Trug and T, become nonzero with val-
ues The final expression, valid to a linear orderun, does not
depend oru;y—a property, whose origin is the spontaneous
~, Byl broken rotational symmetry of the nematic phase, that is re-
T“:Jo:m1 (428 sponsible for the vanishing of the membrane shear modulus.

Using Eq.(4.8) in Eq. (4.7), replacingd; by d{ = Ag;;d;, and
retaining only the dominant terms iu, we obtain

B_~
Trup=— =Trug,
= BEC F= 3 kol G243 1y (35002 sy () (95h)
_ Blyl 428 + 3Ky (U0 %+ FK(d5Uy) 7+ INUG+ 2N Uy
2By— B? + NyUxxUyy s (4.9

By choosing axes so that the anisotropic stretching is along/here to streamline our notation we again drop primes by
thex axis, we can expresg, andug in terms ofA o, andA,,  replacingu’ with u andd; with ;. The strains are the usual
as nonlinear strains relative to the new reference state, which to
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a linear order are simply, = d,u, anduy,=d,u, . The bare

elastic coefficientsc’s, K's, and\’s are determined by the Ggy(q)— quzqy
parameters of the original Hamiltonian ang: AVGZQZ+K(Q)a* Ny ai+0,qD) 4126
_ A4
K= Nox where
ny:AnggyK ) )\iy
)\x,y:)\x,y 1_V)\y . (4.13
Kyy= A
4 Stability requires\,>0, Ay>0, and\ )\ )\2 >0. \y, and
Ki=AgyK )\ both go to zero Imearly i\ y— The domlnant
4 parts of theu, andu, correlation functlons are identical in
Ky=AoK, form to the displacement correlation functions of a two-
, ) ) ) dimensional smectic, which have been extensively studied
M= AGd B+ B(AG—AG) + 3 ¥(AG,—AG))2], [35]. Both (u2) and(uﬁ) diverge with system size:
Aoy [B=BIAG—AGy) + 3 ¥(AG—AG)), 4 dqxdquo
<UX> (277 XX( )
) ) ) 2 2 2m/Ly 27T/L
AOy[B_ Y(AOX_AOy) 1. (4.10

—1\/ S (2mal L2
—)\—),( Faxl’ll“( mayLy/LY)

B. Fluctuations and correlations of the Harmonic model

We study fluctuations of nematically ordered elastomer 1 L
membranes within a harmonic approximation for the physi- —— /= if LZ>27a,
cally realizable case obD=2 andd=3. In this case, the \/EWM 2may
displacement vectou has two components and the height = 111, (4.14
has a single componeht Within this approximation all cor- 5 — if L)2/<27Tax|-x,
relation functions are related to the harmonic two-point cor- (2m)° \, ax

relation functionq 34]
& wherey, (2) is a crossover function. The expression(fﬁ)
a g is obtained by interchangingandy in the equation fofus)
GO =(h h(0 :f iq rGO , Yy ging y q
(1) =(h(1)h(0))0 (27 2¢ () The anisotropy lengtha, anda, are defined as

(4.113
ay=(Ky/\ )Y, (4.153
GO.(1)=(u (1) uy(0)) —f—zdzq 976G (),
i (D =(WOW 0= | 50 q( , a,= (K, /\[)Y2 (4.158
4.11

_ _ They diverge as the stability Iimitx)\y=)\)2(y is approached.
expressed in terms of corresponding “propagato@(q) The connected phonon correlation functions at two spa-
and G i(d). As usual, the averages are computed using aially separated points are
Boltzmann weighZ, te~ "ol (for convenience usinggT
as the energy unity integrating over phonon and height Ch(N=([ui(N =u(O)][uj(r)—u;(0)])o. (4.16
undulation h fields, with Zo=/DhDue " the partition
function and’H, the harmonic effective Hamiltoniafi{,  For an infinite membrane
= [d?xF,[h,u] obtained from effective HamiltonianX

= [d?xF[h,u] by neglecting all elastic nonlinearities ap- dg,dq .
pearing in Eq(2.13. Co(r)=2 (2:7)2y Gl(q)(1—€'9)
The height propagattﬁﬂ(q) is given by Eq(3.5) and the
phonon propagato@ (g) by Eq.(3.16 specialized to two x| 5 1yl ly|
dimensions: =/ eyiGadx) ¢ T o ,
Ny ¥ T 2\, A Zm
G @) - (4.123 1 []¥]
= . X
” Nz +Kyay —\/ = i |yl<2Vax|
Ay may
~ (4.1
GSy(q)= %. (4.12b L M if |y|>2vayx|,
)\;,qy‘f' qux )\)’( ay
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where erfk) is the error function. The strong power-law

growth ofGiOi(r) indicates that thermal fluctuations lead to

arbitrarily large relative displacements of two points distant (a) -----------------------
on the membrane, again contrasting with the usual logarith-

mic growth withr in two-dimensional ordereay-like sys-

tems.

The stability of the spontaneous nematimiaxial) order
can be analyzed by examining the rms fluctuations of the / \
nematic director fieldSn(r). Since in the nematic state, the (b) ‘ )
director is “massively” tied to theantisymmetrigart of the
displacement gradient tensoy;;=d;u; [16], orientational

fluctuations can be computed from those of phonon fluctua-
tions. To a linear order in rotations of the directoraway

from its preferred orientation along the axis, én,= 6
= %(axuy—ﬁyux). The angle correlation function is then O I — / [
Gaa<q>=%[qiei’x(qHinSx(m—ququSy(q)](. ]
4.1 TeeT

FIG. 1. Feynman diagrams renormalizing elastic constargs

(@), «'s (b), andK’s (c). Solid lines denote undulation fieldsand
dashed lines denote phonon fielads

It is clear from Eqs(4.129—(4.129 that within the harmonic
approximation in-plane orientational fluctuations are finite.
Turning to membrane out-of-plane fluctuations, we find
that at harmonic level local rms undulatiofi(r)?), behave
in the same manner as those of polymerized membranes witkmong phonon fields and between phonon and height fields.
The violent power-law fluctuations of these fields, the height
(h(r)®)y=d, - L . dg.da, G%(q) field in particular, lead, as in other membranes systems
iy X iy y

2 [9-12], to divergences with system sikeof perturbations in
) anharmonic couplings for membranes with spatial dimension
_ de(27Ly) (ﬁ) 419 D less than the critical valuB . In this section, we consider
K " Ly’ ' the interplay between fluctuations and anharmonic couplings
in D-dimensional nematic elastomer membranes embedded
in a d-dimensional space and show that the perturbation
theory breaks down belo® .= 4. We then study the anoma-
" - 1 lous elasticity of these membranes in arxpansion about
¢h(z)=4f dxj dYﬁ- (4.20 Df4. Our interest |§ in de.veloplng an insight into the prop-
1 z (XHy9) erties of real two-dimensional membranes. We, therefore,
consider only those models that have a straightforward ana-
lytic continuation toD =2. The two models we consider are

where for simplicity we specified the case of isotropic bend
ing rigidity « and defined scaling function

with crossover property

20 70 the fully anisotropidd-axial elastomer, which has no surviv-
ing shear modulus, and the uniaxial model in which we set

yn(2)—1 27 - (4.2)  the shear modulug, , Eq. (2.28, for shears in the plane
72 ' perpendicular to the nematic direction to zero. These two

models are equivalent in the physical limit bf=2.

As in crystalline membranes, the strohg growth im-
plies instability of the flat phase to thermal fluctuations, as
well as the importance of anharmonic elasticities, whHah A. Perturbative analysis of elastic nonlinearities
in polymen_zed membrangsan sta_b|l|ze the flat phase. Fur- The elastic free energg, Eq. (2.37), contains nonlineari-
thermore, in contrast to polymerized membranes, here the i ) o . N
power-law divergent, smecticlike in-plane phonon correlaies associated with membrane undulatidiisvolving h
tions that we found above, E¢4.17), suggest that phonon field) and in—plar_le php.non.nonlinearities. The importance of
elastic nonlinearities in E¢2.13 may be important as well. undulation nonlinearities is a consequence of the mem-
We turn to these questions in the next two sections. brane’s vanishing tensio(softness of out-of-plane undula-
tions, controlled by curvature, rather than the surface tension
energy. As in an isotropic polymerized membrafg6,12,
undulation nonlinearities become relevant when the dimen-

As discussed in Sec. Il, rotational invariance in the targesion of the reference space is lower than four. To illustrate
space requires the elastic free energy to be expressed fhis point, we calculate the perturbative corrections to elastic
terms of nonlinear rather than linear strains. The result is thatonstants\;; from undulation nonlinearities which are repre-
there are anharmonic couplings in the elastic energy botkented by Fig. (g):

V. ANHARMONICITIES AND THE € EXPANSION

021108-9
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1D d°q Undulation nonlinearities renormalize bending rigidities
SN =— > > )\ik)\“f ——— g [Gn(a)]? xi; as well as in-plane elastic constants. One would ex-
Kl (27) pect that as in the case of isotropic polymerized membranes,
- . . 47D .
d LD D the perturbative corrections tq; also diverge a&™ “. This

n202
__ DEY J' dfp i (5.1) is, however, not true, as one can see from the following
2(4—D) £ "KM (2m)P k4(q)’ argument. Note that if we neglect in-plane nonlinear terms

(which is legitimate above three dimensipnis Eq. (2.37)
where we assumed that the system has an equilibrium corand seK; to be zero, we can integrate out the phonon fields
figuration of D-dimensional sphergdisk in two-dimensional completely and what is left is only the bending energy
casg with radiusL. dQ)p, is the differential surface element v

_ : _ : ijkij(97h-92h) without any nonlinearities. Thus, there
of the D-dimensional unit sphere. Quite clearly, for<4,  gh51d be no anomalous elasticity for bending rigidity, if
the fluctuation corrections);; diverge with system sizé.

. . . there are no in-plane curvature rigiditi&s; . This implies
The associated nonlinear length scale, beyond which thesga; in the presence df;;, renormalization of bending ri-

corrﬁctions bkecome comparable Xg and the perturbation  giqjties xi; is dominated by anisotropic, smecticlike modes,
method breaks down, is given by for which in-plane curvature rigiditiek;; are important, and

—\ 1/(4-D) the critical dimension below whick;; is infinitely renormal-
(4—D)«k? N . A
h = ——— , (5.2 izedis three, as in smectic liquid crystals.
A The outcome of the above discussion is that i2ar4 in

) ) — i the D-axial model, all in-plane nonlinearities in are irrel-
where) is the typical value oh;; and 1k“ is defined as the  evant and in the uniaxial model nonlinearitiestip and u,
angular integral in Eq(5.1). are irrelevant. Consequently, to capture the long-wavelength

If the modulusy, for shears in the direction perpendicu- pehavior we can use simplified expressions for the full non-
lar to the anisotropy axis in the uniaxial model is zero, thenjnear strain tensors, given by

fluctuations inu, Eq. (3.6) have the same~“ harmonic-

theory divergence as height fluctuations, but V\Kt(ﬁ) re- D—axial:uij—>%(c9iuj+&jui+z9iﬁ~8jﬁ), (5.49
placing «(q). Thus, whenu, =0, bothh andu, contribute

to divergences in;; belowD=4. This point was missed in uniaxialuijei(aiuj+ajui+aiﬁ- r;jﬁ_,_ GiU- 9Uy).

the analysis of the fixed-connectivity-fluid fixed point in Ref. (5.4b
[6].

As discussed in the Introduction, the spontaneously broThe effective Hamiltonian for studying membranes without a
ken in-plane rotational symmetry of the nematic elastomegshear modulus i, Eq. (2.37, with x, =0 and one of the
membrane leads to soft in-plane elasticity. As a result, irasbove reduced strains.
strong contrast to isotropic or crystalline membranes, in- The difference between this model free energy and that of
plane nonlinearities i¥, Eq.(2.37), also correct the elastic jsotropic polymerized membrangs,6], as well as that of
moduli\j; . Its contributiond\j; , as represented by diagram fixed-connectivity-fluid membrangs], should be stressed.

Fig. 1(c), is given by First, the bare elastic constantg and \;; are anisotropic
5 5 o rather than isotropic, and the anisotropy Ny cannot be

1 D d“q 23 G0 2 eliminated by a simple rescaling of lengths. Second and

ONjj =~ 2 o }‘ik)‘JIJ’ quql ~ |G @] more importantly, the energy cost for shear in the planes of

(5.3 anisotropy iszero because of the spontaneous broken sym-
metry of the nematic state. Thus, our model free energy, Eq.

In the D-axial model, the dominant fluctuations @2, are  (2.37), is not a simple anisotropically scaled generalization
smecticlike, and it is straightforward to show that they causedf fixed-connectivity fluid[6]. The matrix of coupling con-
the above correction tajj to diverge ad ®"D2 pelowD  stantskj; is such that the elastic energy cannot be reduced to
=3 if the phonon fluctuations retained their harmonic charthat of density variation alone.
acter down toD=3. In contrast in the uniaxialanalytical
continuation model, the contributions t6>\i‘} due tou; fluc- B. Renormalization group and (4—D) expansion

tuations diverge belowD=4 when u, =0, as discussed In isotropic membranes belo® =4, height fluctuations

above. Thenn part of G,,, is, however, smecticlike and di- |oad to anomalous elasticif—17 with bending modulus

3-D)/2 . . . . .
verges more weakly_ as® D)2, _ and elastic modulus, respectively, diverging and vanishing
A similar calculation shows that the perturbative correc-yith wave number as

tion to in-plane elastic constaris; is dominated by in-plane

nonlinearities and also diverges below three dimensions. k(Q)~q~ 7, NQ)~q™, (5.5
Thus, the upper critical dimension for undulation nonlineari-

ties is four, while in-plane nonlinearities become relevantwhere the exponents, and », are related via the Ward
belowD=3. For 3<D <4, in-plane nonlinearities are irrel- identity [6]

evant and, consequently, in-plane curvature energy moduli

Kj; are only renormalized finitely. 27+ n=€=4-D. (5.6
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We have just argued that is not renormalized for dimen- dO~ 4262
; ) . . K p Ydkdi
sions near four in the models without shear moduli that we M= | 50 wpm
are considering. Thusy,=0 andz, =e. In this section, we (2m)" K2(q)

will show explicitly within a RG calculation that this is in- ) . ) .
deed the case in both models we consider. Note thatM,, like \j; andA;; defined in Sec. Il, is really a

We use standard momentum-shell renormalization-grougubset of the components constructed from the fourth-rank
procedures, integrating out a shell in momentum space witfNSOr
Ale'<g<A, whereA is the ultraviolet cutoff, to produce
fields u=(r) andh=(r) with wave numbers with magnitude K :f
g<e 'A. We then rescale lengths and fields according to ikl

(5.12b

dQp ;G
2m° «2(q)q*

(5.13

r=r'e, (5.7
u=(ry=ex'u/(r"), (5.8
h<(r)=e?h'(r"), (5.9

S0 as to restore the ultraviolet cutoff to its original vallie
In the uniaxial case, we decomposeas in Eq.(3.6) and
choosey,,= x. = x and y; different from y. In the D-axial
case, we can choose all thgto be equal toy. It is conve-

nient to choose the rescaling so as to preserve the nonlinear

form of the strainu;; , Eq. (5.4). This requires

Y=2¢—1=2y,—1. (5.10

and Mﬁm defined in a similar wayM, does not transform
like nor have the symmetries of a second-rank tensor. The
D-axial and the uniaxial models differ mostly in their respec-
tive forms of A;; and M;;. These different forms require
slightly different fixed-point analysis, and we will now treat
the two cases separately.

Regardless of the model, we can choase (4—D)/2
and x;=(4—D)/2 to keepx;; andKj; fixed. Then,xy=3
—D and the inverse correlation function for the partsuof
not in the anisotropy plangse., notu;) scales as

Gii (AN K =G Helgn (1)K (D)

=e “\j(haig+K(@g®.  (5.19

The integration over the high-wave-vector components ofl US: ifXij has a nonzero fixed point valug; , then, choos-

u andh can be performed perturbatively in nonlinearities of N9 €
Hamiltonian, in a procedure very similar to that of the per-
turbative analysis. The Feynman graph giving one-loop cor-

rections to\;; is shown in Fig. 1a).

'lg=1, we have
Nij(@)=\{ig". (5.19

Both «;; and Ki‘j remain constant.

After performing the rescaling and calculating the graphic
corrections, we obtain the following RG flow equations: o
C. The uniaxial model
In the uniaxial model, both\;; Eg. (2.3) and M;; are
uniaxial. M;; is easily calculated by taking the appropriate
components of the full fourth-rank tenshf;;,, , Eqg. (5.13:

51 = (D24 20N =52 MMk, (5114

4k _ o ) 1

ar — (D4t 2¢)K;, (®.11b Mij=M018j1+ 5 =gy M [8a(1= 0j0) + (1= 6 3y1]

dKij .

T:(D—4+2)()Kij, (5.119 +ml\/ﬁ(l*‘zaj)(l—5i1)(1—5j1).
(5.1

dKj; .

1~ (D=4+2x)Kj;, (5.119 <

d The components dfl; andMi’} of M;; have simple expres-
sions in terms of integrals over angle:
where, for simplicity, we have set the ultraviolet cutaff

=1. The components of the in-plane bending coefficient, dQp coge

Ki}, coupling tou, andu, scale withy, whereas the com- M{j= 2P m (5.173
ponentsKitJ- coupling tou; scale withy; . The matrixM,, has
similar but different forms for the uniaxial arid-axial mod- .
els. In theD-axial model,M,=d.My; and in the uniaxial MK = dQp cos'gsir (5.17b
modelM,=d .M+ (D—2)ME, where . 2m° 2@
n2n2 : 4
o [ 920 Gidi (5.123 mr— [ 900 SO (5.179
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displacements along the ring and one positive and one nega-
tive exponent for displacements perpendicular to the ring.
The fixed points and their stability exponentsg, w,, and
w3 are given as follows.

(a) Gaussian:

W1=Wy=W3=E€. (5.19

(2) Uniaxial nematic elastomer:

- | / B lZZEMJ_ ZZ_ZEMHL 3:26MH
~ ~ - b/ AM 1 AM L AM 1
~
FIG. 2. Renormalization-group flows for the uniaxial model, W= T€ W= TE  W3TTE, (520
showing the GaussiafG) and the uniaxial nematic elastom@E) _ 2
fixed points and the fixed ringR, unstable in one direction and WhereA,M_M,HM_i_MHi'
marginally stable around its perimeter. The locus of flow lines, of (3) Fixed ring:
which GA and GB are two examples, fron® to R and extended
beyondR form a distorted con€. All the points within and on the A= 2e
boundary ofC flow to the stable fixed-point NE. All other points 1 M|\+26VM||L+ ale ’

flow to large coupling.
" )\2=a7\1, )\3=a27\1,
where 6 is the angleq makes with the uniaxial axisone-
axis). A similar set of expressions applies to the components w1=—€, =0, wi=c¢ (5.21
of M{ with K(q) replacing x(g). Note that M, _ _ )
=M, /[(D-1)(D+1)] and M;=My=M, /(D-1), fpr —esa<®. For every pomt on th_e rln_gyl)\?,:)}z. Th_e
whereas the components of the true second-rank uniaxidixed ring includes the following various interesting points:

tensorT;; satisfiesT 5= T;,=T15=0. (@ a=1, N;=N,=\3, this is the fully isotropic fixed-
With these definitions, the recursion relations for the com-connectivity-fluid fixed point of isotropic membrani; (b)
ponents ofz;; become a=—1, N=—Ay=h3; (0 a=*o, N=N=0, A3
:26/MJ_ X and(d) CYZO, )\1:26/MH y )\2:)\320.
diy _ 1.y 2 2
ar €A1 =z (MM 2N A oMy L+ A5M ), D. The D-axial model

(5.18a The analysis of théd-axial model is complicated by the

fact thath;; has a large numbgiD (D +2)/2=10 in D=4]

of independent components. To simplify our presentation, we

will first consider flows in a restricted subspace in whigh

(5.18n  is parametrized by only two parameters. Thus, we will first
find four fixed points with a particular structure and show
that one of them is globally stable and descritizsxial
nematic elastomer membrane. We then give a general solu-

(5.189 tion for all fixed points and show that it actually contains
both the fixed point, Eq(5.20, and the fixed ring we found

where A1, \,, and \3 were defined in Eq(2.31). These for the uniaxial model. Furthermore, we show that if anisot-

equations have an unusual fixed-point structure as shown ifpy of \j; is turned on in the — 1)-dimensional plane, the

Fig. 2. In appropriate two-dimensional planes in the threeuniaxial fixed point, Eq.(5.20, becomes unstable and the

dimensional space of;, \,, and\3, they exhibit the famil-  system flows to the globally stabl@-axial one.

iar four-fixed-point structure of systems with two coupled  Our recursion relations are still given by H§.119 with-

potentials in which there is one unstable Gaussian fixedut K;; . Choosing¢ to keepx;; constant, we obtain

points, one globally stable fixed point, and two fixed points

that are stable in one direction and unstable in the other. The d»

full three-dimensional structure is topologically equivalent to dl €hzAA M

what would be obtained if the two-dimensional structure is

rotated about the axis connecting the Gaussian and globallyhereA and M are, respectively, matrices with entrigg

stable fixed points and subsequently stretched anisotropandM;; . As in the uniaxial case, this equation should have

cally. In this process, the two mixed-stability fixed points an isotropic fixed point will all\;; equal, i.e., withA~1

become an elliptical ring with stability exponent of zero for where 1is the matrix with all entries equal to one. It is also

di,

o €N FONNM NI+ N gAML+ oA M),

dhs

W: €N3— %()\gML+2)\2)\3M||L+)\§M||):

: (5.22

>
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clear that this equation has a fixed point with-M ~1 pro-
vided the symmetries ok and M are compatible. In the
uniaxial caseM has more unequal components tharthus
the solution\~M "~ 1'is not permitted there. In thB-axial

PHYSICAL REVIEW E68, 021108 (2003

We have thus identified one globally stable fixed point,
the nematic elastomer fixed point, and two others. The full
fixed-point structure of the flow equation, EG.22), is ac-
tually not difficult to determine. Sincll is generically posi-

caseM has the same number of mdependent components dive definite, we can define a neisymmetrig coupling con-

a D-axial second-rank tensor and~M ~! is permitted. We

stant matrixP=M2\ M¥?/(2¢), whose flow equation is

thus begin by seeking fixed points in the 2D subspace degiven by

fined by
A=NM"+ N1, (5.23
The recursion relations fox, and\,, are
Ma_ ram a2 5.24
e (5242
d\y, 1 -
_:6)\b_ _)\b 27\a+)\b2 M” y (524b
dl 2 =1

where we used M 1= 2 iMj;1. The fixed points and their
stability exponents for these equations are given as follows
(1) Gaussian:

Na=M\p=0, (5.25
W= wp= €. (5.26
(2) Fixed-connectivity fluid:
2€
Na=0, Ap=7 , (5.27
W= €, Wp= —E€. (5.28

This fixed point is in fact the isotropic fixed-connectivity-
fluid fixed point found in Ref[6] for isotropic membranes.
(3) Mixed:

(5.29
(5.30

Wa=—€, wWp=E.

We call this fixed point mixed because its coupling constant
matrix A has components characteristic of both the fixed con-

nectivity fluid and theD-axial membrane fixed points.
(4) D-axial nematic elastomer:

Na=2¢, \p=0, (5.31
wa: wbz—e, (532
This fixed point is in fact globally stable, i.e., it is stable in

all directions. Pluggingh =AM~ into the recursion rela-
tion, Eq. (5.22, and I|near|zmg, we obtaindSA/dl=
—eoh. Thus, the stability exponent is e for all directions.

| o
ln]

2, (5.33

P

2
g

One can immediately see that every projection md8# is
a fixed point forP and vice versa. This means that the gen-
eral solution for the flow equation, E¢.22), is given by

}=\:2€M_1/2E) M—l/Z, (534)
with P as an arbitrary projection matrix.

We can classify fixed points, or more generally fixed sub-
spaces, by the dimensidd, of the space thaP projects
onto. Of course, =D . If the dimensiorD of the elastic
Smanifold is an integer, theR can project onto all subspaces
with dimensionDp=0,1, ... D. WhenD is not an integer,
the classification is less clear. A convenient set, however, is
the set with dimensionalite®,=0,1,...[D], and Dp
=D,D—1,... D—[D], where[D] is the greatest integer
less than or equal tB. If Dp=D, PP=] is the unit matrix,
where the superscript indicates the dimensiorPoflf Dp

=1, P =eg;g; for any unit vectore. A (D —1)-dimensional
operatorP(D D= o;;—e;e; can also be constructed from the
unit vectore. S|m|larly, k- and (D —k)-dimensional projec-
tion operators can be defined viB!j- =E|k:1e“e,j and
PP™9=5,—Pf, wheree,-e=dy.

To study stab|I|ty of the flow equation, E¢5.33), for P

for a given fixed-point projection matnPD , We express
deviations ofP from PDO as
5=P=Py°=P1+Py+Ps, (539
where
Py =Pp°P Py’ (536
P,=(1~Pg®)6P(1—Po°), (5.37
Py=PQ°5P(1-P0")+(1-PJ*)6PPs°. (538

Recall thatP is a D-dimensional symmetric matrix with
D(D +1)/2 independent component, is the prOJectlon of
6P onto theD,-dimensional subspace defined IB@( and it
hasD(Dy+1)/2 independent components. SimilafBy is
the projection oféP onto theD — D, dimensional subspace
defined byl — P2° with (D — D)(D — Do+ 1)/2 independent
components. Flnallylgg represents th®,(D—-Dgy) compo-
nents oféP, which couple the subspaces definedRyy and
|- Ego. To linear order, the flow equations foP are
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d axis. It is not difficult to show that the stable uniaxial fixed
g1F1= P (5.39  point corresponds to a two-dimensional projection operator
d PSij:elielj+92ie2j : (5.43
a1 P>=P>, (5.40
where
d 1/2 1/2
$7.Ps=0. (5.41) e =My TMj%, (5.44
D
Thus, P, is stable,P, is unstable, and?; is marginally ey = \/ E 2 ”L Mi2], (5.45
stable. This means that t&,-dimensional fixed-point pro- k=2 My

jection matrix is stable with respect to any chang®im the - o _ o o
Do(Do+ 1)/2-dimensional space db,x D, matrices that Thus, the uniaxial fixed point is a point, satisfying uniaxial

operate in the space defined Bgo. it is unstable with re- constraints, in a 2y —2)-dimensional fixed manifold of all
spect to any chang:as ’ in P in the possible couplings. A point on the uniaxial fixed ring param-

(D—Dy)(D—Dg+1)/2-dimensional space of D(—Dy) etrized t;ylad cfgrr%sgonf‘s to a one-dimensional projection
X (D—Dg) matrices that operate in the space defined by operatorby defined by the unit vector
- PD°' and it is marginally stable with respect to changes in

P in the DO(D Dy)-dimensional space of matrices that 1/2+ 2 M1/2

couple P, Do 1 S5— PD° These results imply that the set of _

f ei(a)— 2 2" (546)
ixed points deflned by alD ,-dimensional projections matri- (Mj+2aM +a M)

ces is aDy(D — Dg)-dimensional surface in the space of all

possible symmetric matricé? or, equivalently, in the space The set of vectore(«e) defined by alle define a one-
of coupling constanty. This space is necessarily compact gimensional loop in al) — 1)-dimensional fixed manifold in
since the subspaces defined Fbyo are parametrized by unit the space of all possibB-dimensional couplings.

vectors.

There is only one projection operator witly=D. This is
the operatoiPg =1 that projects onto the whole space. For
this case,P, and P; are both zero and the fixed point is  In this paper we studied thermal fluctuation and nonlinear
stable in all directions. It is the globally stable fixed point elasticity of nematically ordered elastomer membranes in
with A=2eM %, which is identical to the stabl®-axial their flat phase. For the physical case of two-dimensional
fixed point of the restricted set of class of couplings definednembranes, we found that at harmonic level in-plane phonon
by Eq.(5.23. The other fixed points for the restricted set of correlations are short ranged but the in-plane orientational
couplings must correspond to 30@50 with Dy<D. Itis  order remains long ranged, in spite of violent thermal fluc-
straightforward to show that the fixed-connectivity-fluid Elcj)aailr?gft.)itp;zgrsge(;?r:;ze%té?gng; 21Qri??athcei?tsﬁoe?ﬁ;rﬂi?;g{;ne
. . l _ . =
fixed point corresponds B;; = &;e; with or D-axial nematic order allowed us to study the effects of
out-of-plane undulation and in-plane phonon nonlinearities.

VI. DISCUSSION AND CONCLUSION

2 M1/2 We found that undulation nonlinearities are relevant when
D <4 and dominate over the in-plane nonlinearities that only
elz—/?’ (542 pecome important whe® <3. Focusing on the dominant
( 2 M,J> undulation nonlinearitiend neglecting in-plane nonlineari-
=1 ties), we performed a RG calculation combined with an ex-

o . 12 pansion abouD=4 and found that for 33D <4 bending
where M;;* is theij component of the matriM ™. Thus, rigidities are only finitely renormalized, while in-plane elas-
this fixed point is actually a single point in ®1)=(3  tic moduli become singular functions of a wave vedice.,

— €)-dimensional fixed manlfold Similarly, the mixed fixed exhibit anomalous elasticity vanishing with a universal
point corresponds t@oIJ = & —eej. There are other un- power law. This power law is controlled by an infrared stable
stable fixed points foh not descrlbed by the restricted set fixed point whose stability we analyzed in detail for the
defined by Eq(5.23), in particular, those wittby=2 orD uniaxial andD-axial analytic continuations, finding agree-

-2. ment in fixed-point structure. This analysis also allowed us to

We have identified all of the fixed-point manifolds of the make contact and recover some of the results previously ob-
D-dimensional coupling matrix. These must include the tained in the studies dtrystalling polymerized membranes.
fixed points of the uniaxial model discussed in the precedindn particular, we found that the so-called connected fluid is
section. When uniaxial constraints are applied, it is natural toealized as a fixed point of a nematically ordered elastomer
construct unit vectors and projection matrices from the commembrane that is unstable to the globally stable nematicelas-
ponents ofM parallel and perpendicular to the anisotropy tomer fixed point.
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We conclude with a discussion of the global conforma-
tional phase behavior of nematic elastomer membranes. As
with ordinary polymerized membranes we expect, upon
cooling, isotropic elastomer membranes to undergo a crum-
pling (flattening transition from the crumpled to the flat-
isotropic phase. Upon further cooling, an in-plaffiat) iso-
tropic to(flat) nematic transition can take place. As shown by
Toner and one of uR23], polymerized membranes, with an

Ter arbitrary small amount of in-plane anisotropy, inevitably ex-
hibit the so-called tubule phase whose properties and loca-
tion in the phase diagram are intermediate between the high-
temperature crumpled and low-temperature flat phases. Thus,
we expect that for nematically ordered elastomer membranes
there is a similar nematically ordered tubule phase. Since in

TIN such a state the in-plane rotation symmetry is spontaneously
(as opposed to explicitfybroken, we expect qualitatively
distinct in-plane elasticity distinguished by the presence of a
new in-plane soft phonon mode. Consequently, a nematic
tubule should be a qualitatively distinct phase of elastic
membranes. This discussion is summarized by a possible
schematic phase diagram for a nematic elastomer membrane,
illustrated in Fig. 3. Also shown in this figure is a possibility

TFT of the nematic-flat to nematic-tubule to nematic-flat reentrant
phase transitions as a result of competition between growth
of nematic order(anisotropy and suppression of mem-
brane’s out-of-plane undulations upon cooling. A detailed
analysis of the nematic-tubule phase and these phase transi-
tions will be discussed in a separate publicafi2l.

‘ ing this remains an open and challenging problem.

ACKNOWLEDGMENTS

L.R. and X.X. acknowledge the hospitality of Harvard
Physics Department, where part of this work was done. The
authors thank John Toner and Jennifer Schwarz for useful
discussion. The authors acknowledge generous financial sup-
port for this work from the National Science Foundation un-
der Grant Nos. DMR 00-96531T.C.L. and R.M) and

FIG. 3. A possible phase diagram for ideal nematic elastomeMRSEC DMR98-09555(L.R. and X.X), from the A. P.
membranes. As the temperature is lowered a crumpled membrargloan and David and Lucile Packard Foundati@in®.), and

undergoes a transition to isotropic flat phas& gt, followed by a  from the KITP through Grant No. NSF PHY99-079%X).
2D in-plane isotropic-nematic-like transition to an anisotr@pée

matic) flat phase. AS is lowered further, this anisotropic flat phase

becomes unstable to a nematic tubule phase, where it continuoushPPENDIX: SCALING OF HARMONIC FLUCTUATIONS
crumples in one direction but remains extended in the other. At even AT TWO DIMENSIONS
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G\008

In this appendix, we show a detailed calculation to justify
the approximate form of harmonic phonon propagators in

) ) ) two dimensions, as presented in £4.12).
Despite some of the success in understanding the behavior 1,4 propagator&? (q) are easily found through equipar-
) . e ij
of nematic elastomer membranes, there are obvious Ilmltq-ltion or by a Gaussian integration:

tions of our analysis, most notably in the application of our
work to the physical case dD=2 elastomer membranes.
This shortcoming primarily has to do with the neglect of

2 2
0 aqu ayqx
in-plane elastic nonlinearities, which near the Gaussian fixed XX 2

4
point become relevant fdd <3. While it is very likely that Mt Ky G Gy
the subdominance of these in-plane nonlinearities relative to
the undulation ones will persist some amoileiow D=3 1 a,92 a,q>
[37], we expect that in the physical case B2, all the GO ()= b, i A
ineariti i D W< Y O MR P
three nonlinearities need to be treated on equal footing. Do- ydy T KyQy x y
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FIG. 4. A polar plot of the crossover function

Do(a,02/ay,a,02/ay), with q=+gZ+q’ fixed. Shaded are the
“decoupled regions” wher¢qx|<axq§ or |qy|<ayq§. While @ is
positive and finite for allg, in the limit g—0 it exhibits cusps at
0,=arctanf,/q)=nw/2 (n=0,1,2,3).

axqi) ’ (aytﬁ
ax | %\ q
Ax)\yqqu

y
2 2

aqu ayy

- )\xququDO( Oy , q_y

(A2 + Ky (N a5+ Kya) |

)\xy(ﬁo(

( an)Zl ayQ>2<
dy ,
Ox Oy

GSV(Q) ==

(A1)

with anisotropy lengths, anda, defined as
ayx= (Kx/)\x)llza (A2a)

a,=(Ky/\y)M2 (A2b)
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if z—0 and w—0

Do(z,W)=y 1—p (A4)
1, if z—o or w—o,
with the ratio
)\2
2_ ™y
p W (A5)

required by stability to be less than 1.

As can be seen from the asymptotic form given in Eq.
(A4), the scaling functiomb o(aq;/dy,a,qz/dy) is finite for
all g and therefore simply provides an angular modulation to
the phonon correlation function@ﬂ(q). Its value ranges
between the “decoupled” and “coupled” values of 1 and
1/(1— p?), with the decoupled regime defined by a union of
|qy|<ayq)2( and|qx|<axq§ regions ing. The coupled regime
is the complement of the decoupled regimgq§<|qx|
<a, "qy/"?, as illustrated in Fig. 4. As a result, self-
correlation(diagonal functionsGSX(q) and Ggy(q) are es-
sentially those of two independent 2D smectics with and
y-directed layer normals and corresponding phonanand
uy, respectively. The only effect of the cross coupling on
these phonon self-correlation functions isfituitely enhance
their amplitude in the coupled regime, without modifying
their long-wavelength pole structure. Thus, in order to study
the fluctuation olu, field, we only have to concentrate on the
wave-vector  region gi~aiq,. For gi<alqy,
Do(aqy/ay,a,05/0,)~1 and G(q)~1/K.qy, while for
qul>qx>a§q;‘2 . Po(axay/ax.a,05/a))~1(1-p?) and
Gy (q)=~1/A,q; . This is exactly the same as the asymptotic
behaviors of Eq(4.123. Thus, we see that E¢4.123 is a
good approximation forGQ in the wave-vector regiorqf(
~aZq, . Of course, forgy>J the ratio between Eq4.123
and fo is approximately 1/(% p?), but this region is not
important for fluctuation ofi, phonon anyway. This analysis
also applies thS if we exchange labelg with y in every
plaace. Thus, Eq(4.12h is also a good approximation for

v
In contrast, the phonon cross-correlati@off-diagona)

Because of the anisotropy of the nematic state the propagénction Ggy(q) depends strongly on whether is in the
tors are highly nontrivial even at the harmonic level. Theirdecoupled(union of |q,|<a,q2 andqu|<axq§ regions or
angular dependence is encoded by the crossover functionscoupled @Xq§<|qx|<|qy/ay|1/2) regimes. At long scales,

bo(2)= (A3a)

1+2%

1

e b2 daw)

(A3b)

illustrated in Fig. 4 and with asymptotics of the double-
crossover functionby(z,w) given by

near the two dominant andy smectic regions ofy, it is
strongly subdominant to the self-correlation functions
Gy (a) andGJ (q), down by a factor ofj, anddy, respec-
tively.

The subdominance of the cross correlations relative to the
self-correlations can also be seen by analyzing the behavior
of the cross-correlation ratio af, andu,:

G(q)

VG ()GY(a)

A simple analysis shows that in the decoupled regime

ny( q)= (A6)
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2 1/2
|q | ny(q):pr for any<|QX|<|qy/ay| ) (A8)
p (;2<p for |a,|<ayq;
xdy
= A7 . .
P |ay| ) (A7) u, andu, are strongly correlated. In this region, we have
P 2<P for |qy|<ayqx'
yHx
suggesting that thermal fluctuations wf andu, are nearly GO ~ Axy (A9)

independent. On the other hand, in the coupled regime YNy Oy
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